首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A non-hydrolytic one pot sol-gel method has been used to synthesize mesoporous silica ionogels with the confined ionic liquid (IL) 1-ethyl 3-methyl imidazolium tetra fluoro-borate [EMIM][BF(4)]. The precursor for obtaining the SiO(2) matrix was tetraethyl orthosilicate (TEOS) and formic acid was used as a catalyst. These ionogels have been characterized by density measurements, TEM, BET, DSC, TGA and FTIR. The incorporation of the ionic liquid [EMIM][BF(4)] enhances the gellification rate which results in the ionogels having very low density (~0.3 g cm(-3)). The low density has been explained on the basis of the creation of 'blind embedded pores' in the matrix (apart from open pores) due to very rapid gellification (~1 min). Morphological studies provide experimental evidence for the presence of blind pores/voids inside the ionogel ingots. We have also shown that the IL entrapped in nanopores (~7-8 nm pore size) of the SiO(2) matrix has different physical properties than the bulk IL viz. (a) the phase transition temperatures (T(g), T(c) and T(m)) of the IL change upon confinement, (b) the thermal stability reduces upon confinement, and (c) the pore wall interaction with the IL results in changes in the C-H vibrations of the imidazolium ring and alkyl chain (the former increasing) which is also indicated in our DFT-calculation.  相似文献   

2.
功能化离子液体是将功能团弓l入到离子液体的阳离子或阴离子上,从而赋予离子液体某种特殊性质.将具有催化活性的基团弓I入到离子液体的阳离子或阴离子上所得到的功能化离子液体,是一类新型的催化材料.除了具有优异的催化性能,其特殊的物理化学性质很容易实现产物与催化剂的分离,正在许多重要催化过程中发挥作用.本文主要介绍近年来我们关于功能化离子液体的制备、性质及其在催化反应中的应用等研究,同时指出了目前存在的问题,并对今后发展趋势进行了展望.  相似文献   

3.
(1)H MAS NMR and temperature-dependent relaxation time measurements were carried out for the first time on ionic liquids confined in monolithic silica matrices and enabled us to show that the ionic liquids' dynamics experienced only a very small slowing-down. The confinement preserved the ionic liquids' properties and, moreover, allowed liquid-like behaviour at temperatures below the crystallisation temperature of genuine ionic liquids. This study highlights the interest of the ionogel approach to all-solid state devices with genuine IL properties.  相似文献   

4.
离子液体的前沿、进展及应用   总被引:21,自引:0,他引:21  
离子液体作为一类新型绿色介质,近年来获得了突飞猛进的发展.离子液体的多项应用研究正在进行中试或工业性试验,甚至已经进入产业化阶段.推动离子液体研究迅速发展的直接动力来源于国际社会对清洁生产、环境保护、循环经济的强烈愿望,以及离子液体本身的科学探索价值和巨大的应用潜力.离子液体不仅可替代传统有机溶剂或酸碱成功用作化工反应和分离的新介质,而且展示了作为新型磁性材料、纳微结构功能材料、润滑材料、航空航天推进剂等潜力,甚至有望成为食品和医药.  相似文献   

5.
Metal nanoparticles (MNPs) with a small diameter and narrow size distribution can be prepared by H(2) reduction of metal compounds or decomposition of organometallic species dissolved in ionic liquids (ILs). MNPs dispersed in ILs are catalysts for reactions under multiphase conditions. These soluble MNPs possess a pronounced surfacelike rather than single-site like catalytic properties. In other cases the MNPs are not stable and tend to aggregate or serve as reservoirs of mononuclear catalytically active species.  相似文献   

6.
Catalytic ignition of ionic liquids for propellant applications   总被引:1,自引:0,他引:1  
In this proof of concept study, the ionic liquids, 2-hydroxyethylhydrazinium nitrate and 2-hydroxyethylhydrazinium dinitrate, ignited on contact with preheated Shell 405 (iridium supported on alumina) catalyst and energetically decomposed with no additional ignition source, suggesting a possible route to hydrazine replacements.  相似文献   

7.
8.
The application of room-temperature ionic liquids (RTILs) as (co)solvents and/or reagents is well documented. However, RTILS also have "nonsolvent" applications in biotransformations and organocatalysis. Examples are the anchoring of substrates to RTILs; ionic-liquid-coated enzymes (ILCE) and enzyme-IL colyophilization; the construction of biocatalytic ternary reaction systems; the combination of enzymes, RTILs, membranes, and (bio)electrochemistry; and ionic-liquid-supported organocatalysts. These strategies provide more robust, more efficient, and more enantioselective bio- and organocatalysts with many practical applications. As shown herein, RTILs offer a wide range of promising alternatives to conventional chemistry.  相似文献   

9.
Ionic liquids (ILs) are considered advanced solvents with interesting properties that have led to remarkable improvements in the performance of analytical methods and their practical application. Analytical chemistry has profited from the evolution of ILs in diverse contexts, ranging from their applications in microextractions to uses as matrices for mass spectrometric determinations. Their use in sample preparation has meant significant improvements in terms of miniaturization and analytical performance, and given place to new techniques based on liquid-liquid and solid-phase extractions; the latter greatly driven forward by the combination of ILs with nanomaterials. Furthermore, electrodes have been prepared by combining ILs with different modern materials, significantly improving the sensitivity and selectivity of electroanalytical methods. Moreover, the implementation of ILs as additives to mobile and stationary phases in separation techniques has been proved to improve liquid and gas chromatography, as well as capillary electrophoresis, in terms of the number of analytes that can be efficiently separated and of the useful life of columns, representing also a promising alternative to environmentally dangerous organic solvents. Additionally, their application as matrix modifiers and as ion-pairing additives has introduced their use in mass spectrometry. In this review, the design and implementation of innovative and highly efficient analytical methods based on ILs for the sensitive and selective determination of diverse analytes in environmental matrices is described. Critical issues that have arisen from their application and future challenges in electrochemical, separation and preconcentration techniques based on these solvents are also presented.  相似文献   

10.
Anisotropic thermally reversible ionogels of sodium laurate (SL) were prepared in the first discovered room-temperature ionic liquid (RTIL), ethylammonium nitrate (EAN). Polarized optical microscope images indicate that the gels are birefringent, illuminating the presence of anisotropic structures. Small-angle X-ray scattering results reveal that SL and lauric acid (LA) molecules are arranged to form lamellar structures, but no SL crystallites were confirmed by the X-ray diffraction measurements. With an increase of the SL concentration, the interlayer distance decreases. Rheological measurements indicate that the anisotropic ionogels are highly viscoelastic and the storage modulus (G') increases with an increase of the SL concentration in EAN. Electrochemical measurements indicate that the anisotropic ionogels may have potential applications in electrochemical fields. The intermolecular hydrogen bond as well as the solvatophobic interaction of SL and LA formed by a chemical reaction, CH(3)(CH(2))(10)COONa + CH(3)CH(2)NH(3)NO(3) --> CH(3)CH(2)NH(2) upward arrow + NaNO(3) downward arrow + CH(3)(CH(2))(10)COOH, can play a role in the formation of three-dimensional networks having lamellar structures which are responsible for the anisotropic ionogels. The formation of anisotropic ionogels by surfactants in RTILs could be a new phenomenon, but this is not a very classic case of organogels.  相似文献   

11.
Recent developments in task specifically functionalized imidazolium salts, which can be used for specific tasks ranging from catalysts recycling, supports for organic synthesis, catalysis, separation of specific metal ions from aqueous solution, and construction of nanostructures and ion conductive materials, have been reviewed.  相似文献   

12.
In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and--relative to their potential--virtually untouched fluids. It is abundantly clear that these remarkable fluidic materials are here to stay, just as certain design rules are slowly beginning to emerge. However, in fairness, serendipity also still plays an undeniable role, highlighting the need for both expanded in silico studies and a beacon to attract bright, young researchers to the field (406 references).  相似文献   

13.
Journal of Thermal Analysis and Calorimetry - The thermal behaviour of selected ionic liquids, potentially useful as electrolyte components in electrochemical devices, formed by ammonium or...  相似文献   

14.
15.
A series of crown ether complex cation ionic liquids (CECILs) were designed, synthesised and characterised by NMR spectroscopy, HRMS, thermogravimetric differential thermal analysis (TG-DTA) and elemental analysis. Their applications in various organic reactions were investigated: [15-C-5Na][OH], [15-C-5Na][OAc], [18-C-6K][OH] and [18-C-6K][OAc] (15-C-5=[15]crown-5; 18-C-6=[18]crown-6) efficiently catalysed the Michael addition of alkenes and relevant nucleophiles; [18-C-6K][OH] and [15-C-5Na][OH] effectively catalysed the Henry reaction of nitromethane and aromatic aldehydes; [18-C-6K][OH] has excellent catalytic efficiency for Knoevenagel condensation of aromatic aldehydes and malononitrile; PdCl(2) /[18-C-6K](3)[PO(4)]/K(2)CO(3) efficaciously catalysed the Heck reaction of olefins and aromatic halides; [18-C-6K][BrO(3)] can be used as both oxidant and solvent in the oxidation reaction of aromatic alcohols. The CECIL catalysts [15-C-5Na][OH] (Michael addition) and [18-C-6K][OH] (Henry reaction) can be recycled and reused several times without obvious loss of activity and their recovery is very simple.  相似文献   

16.
色谱分析中离子液体的应用及其测定   总被引:5,自引:0,他引:5  
高微  于泓  周爽 《色谱》2010,28(1):14-22
离子液体作为一种优良的溶剂越来越受到人们的关注。由于离子液体特殊的物理化学性质使其在色谱分析中也得到了较广泛的应用。本文综述了离子液体在气相色谱、高效液相色谱和毛细管电泳中的应用,其中包括离子液体作为气相色谱的固定相、高效液相色谱的固定相及流动相添加剂和毛细管电泳的电解质添加剂等,并对离子液体的色谱分离检测作了详细介绍。  相似文献   

17.
The platinum- and gold-catalyzed cycloisomerization of enyne systems has been carried out in various ionic liquids (ILs). In some cases, better selectivities and shorter reaction times have been observed compared to conventional conditions.  相似文献   

18.
In this study, the applicability of a chiral ionic liquid (CIL) as the sole chiral selector in CE was investigated for the first time. In particular, five amino acid ester‐based CILs were synthesized and used as additives in the BGE in order to evaluate their chiral recognition ability. The performance of these CILs as the sole chiral selectors was evaluated by using 1,1′‐binaphthyl‐2,2‐diylhydrogenphosphate (BNP) as the analyte and by comparing the resolution values. Different parameters were examined, such as the alkyl group bulkiness and the configuration of the cation, the anion type of the CIL and its concentration, and the pH of the BGE, in order to optimize the separation of the enantiomers and to demonstrate the effect that each parameter has on the chiral‐recognition ability of the CIL. Baseline separation of BNP within 13 min was achieved by using a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and a chiral selector of 60 mM l ‐alanine tert butyl ester lactate. The run‐to‐run and batch‐to‐batch reproducibilities were also evaluated by computing the %RSD values of the EOF and the two enantiomer peaks. In both cases, very good reproducibilities were observed, since all %RSD values were below 1%.  相似文献   

19.
Paramagnetic surface active ionic liquids (PMSAILs) classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. Paramagnetic ionic liquids had long-chain either in cations or anions and showed excellent surface activity and magnetic properties without any need for the magnetic nanoparticles. These PMSAILs have inherent unique ionic liquid properties and self-assembled into various nano-aggregates such as micelles, vesicles, rod-like micelles, and etc., by modification in the structure of cations or anions. PMSAILs provide stimuli-responsive properties, which is one of the essential aspects of targeted applications. The appropriate functional tunability of anions and cations in PMSAILs leads to various multifaceted chemical and biological applications. A new emerging trend in PMSAIL research is hybridization with flexible materials. This review will mainly deal with the synthesis, characterization, and brief history of PMSAILs and their potential advantages in the various applications in micellar catalysis, purification and separation of biomolecules, compaction and decompaction of DNA, drug delivery, and other biomedical applications.  相似文献   

20.
Cooperativity in ionic liquids is investigated by means of static quantum chemical calculations. Larger clusters of the dimethylimidazolium cation paired with a chloride anion are calculated within density functional theory combined with gradient corrected functionals. Tests of the monomer unit show that density functional theory performs reasonably well. Linear chain and ring aggregates have been considered and geometries are found to be comparable with liquid phase structures. Cooperative effects occur when the total energy of the oligomer differs from a simple sum of monomer energies. Cooperative effects have been found in the structural motifs examined. A systematic study of linear chains of increasing length (up to nine monomer units) has shown that cooperativity plays a more important role than expected and is stronger than in water. The Cl...H distance of the chloride to the most acidic proton increases with an increasing number of monomer units. The average bond distance approaches 218.9 pm asymptotically. The dipole moment grows almost linearly and the dipole moment per monomer unit reaches the asymptotic value of 16.3 D. The charge on the chloride atoms decreases with an increasing chain length. In order to detect local hydrogen bonding in the clusters a new parametrization of the shared-electron number method is introduced. We find decreasing hydrogen bond energies with an increasing cluster size for both the first hydrogen bond to the most acidic proton and the average hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号