首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
考虑了装备使用时间、行驶里程和配备时间等影响备件消耗的多种因素,依据装备备件的消耗特点,在分析偏最小二乘回归方法原理的基础上,运用方法对小样本数据条件下装备备件的消耗数量进行预测.应用示例表明,偏最小二乘回归方法比传统多元回归分析法、逐步多元回归分析法和删除多元回归分析法具有更高的预测精度.  相似文献   

2.
加权总体最小二乘问题的分析   总被引:3,自引:0,他引:3  
总体最小二乘问题由Golub和Van Loan首先进行数学的分析,随后人们对于总体最小二乘问题的算法、解的各种形式、总体最小二乘解和最小二乘解的关系、总体最小二乘解的扰动理论以及数值试验作了大量的研究工作。近来,[10]中给出了总体最小二乘问题(TLS)较一般地讨论。另一方面,Golub和Van Loan研究了总体最小二乘问题的特殊均加权形式。本文试图在[10,11]的基础上讨论最一般的总体最小二  相似文献   

3.
本文提出了一种新的回归模型,剔除相关性的最小二乘,它有效的克服了变量间的相关性,兼顾到变量的筛选。并与最小二乘、向后删除变量法、偏最小二乘比较分析。发现剔除相关性的最小二乘能很好的处理自变量间多重相关性,对变量进行有效的筛选,克服了回归系数反常的现象。  相似文献   

4.
偏最小二乘回归的应用效果分析   总被引:2,自引:0,他引:2  
本文介绍了偏最小二乘回归 (PLS)的建模方法 ,比较了PLS与普通最小二乘回归 (OLS)及主成分回归的应用效果 ,并总结了PLS回归的基本特点 .  相似文献   

5.
PLS分析与RBF神经网络耦合环境模型   总被引:1,自引:0,他引:1  
鉴于城市大气环境质量受到诸多复杂因素影响,且各因素间存在多重相关性,本文将偏最小二乘(PLS)分析与人工神经网络径向基网络(RBF)耦合,建立偏最小二乘径向基神经网络模型(PLSRBF),应用于贵阳大气环境质量的检验和预测。实例表明:PLSRBF模型可对原多自变量模型进行降维简化,并可有效提取解释变量信息,防止信息丢失,且具有较强的拟合能力。  相似文献   

6.
本文用PLS过程建立多因变量的偏最小二乘回归模型 ,并用具体例子对最小二乘回归(MLR)、主成分回归 (PCK)和偏最小二乘回归 (PLS)进行比较  相似文献   

7.
TLS问题和LS问题解加权残量的比较   总被引:1,自引:0,他引:1  
蔡静 《计算数学》2010,32(3):225-232
总体最小二乘(TLS)问题和最小二乘(LS)问题解残量的比较已有多篇文献予以探讨.本文对TLS问题和LS问题解的加权残量进行了比较. 导出了TLS解、改进的LS解及普通LS解加权残量之间的误差界. 从而进一步完善了已有的相关结果.  相似文献   

8.
采用均匀设计试验方案对影响边坡稳定性的因素进行测量,既能节约取样开支,又能得到均匀分散且具有代表性的小样本数据.对该小样本数据结合偏最小二乘回归方法,建立了边坡稳定性系数与各影响因素的非线性回归模型.通过对模型结构、变量投影重要性指标、相对残差值及拟合值的分析发现,基于均匀设计试验利用偏最小二乘回归法可用于对边坡稳定性的分析预测.  相似文献   

9.
为快速、准确地进行公路建设项目投资估算,提出了一种新型的公路建设项目投资估算模型.该模型首先基于独立分量分析技术,根据最小互信息原理,有效分离出公路建设项目投资估算的独立影响因素源.然后,将这些独立影响因素源用于最小二乘支持向量机的训练,从而建立了基于独立分量分析技术—最小二乘支持向量机的公路建设项目投资估算模型.该模型将独立分量分析技术的盲信号分离能力与最小二乘支持向量机处理有限样本条件下非线性回归问题的优势有机结合,提高了模型预测的准确性.  相似文献   

10.
自Tanaka等1982年提出模糊回归概念以来,该问题已得到广泛的研究。作为主要估计方法之一的模糊最小二乘估计以其与统计最小二乘估计的密切联系更受到人们的重视。本文依据适当定义的两个模糊数之间的距离,提出了模糊线性回归模型的一个约束最小二乘估计方法,该方法不仅能使估计的模糊参数的宽度具有非负性而且估计的模糊参数的中心线与传统的最小二乘估计相一致。最后,通过数值例子说明了所提方法的具体应用。  相似文献   

11.
为了提高财务困境预测的正确率,减少模型的训练样本数和训练时间,在传统支持向量机(SVM)预测模型的基础上,将遗传算法、信息熵和缩减记忆算法应用于最小二乘支持向量机(LS-SVM),提出了一种基于遗传算法和信息熵的缩减记忆式最小二乘支持向量机预测模型。并独立推导出了适合财务困境预测这一离散序列的熵以及支持向量机核函数的表达式,同时,给出了这一改进模型的实现步骤。实验结果表明,该模型无论是预测正确率,还是训练样本的数量和训练时间,都显著优于最小二乘支持向量机以及传统支持向量机模型。  相似文献   

12.
为了提高财务困境预测的正确率,改善模型预测的效果,将邻域粗糙集和遗传算法应用于对偶约束式最小二乘支持向量机,提出了一种基于邻域粗糙集属性约简的对偶约束式最小二乘支持向量机预测模型.同时,给出了这一改进模型的实现步骤.实证结果表明,通过邻域粗糙集指标预处理和遗传算法参数优化后,不但提高了模型预测的正确率,还降低了模型运行的时间,证实了该模型应用于财务困境预测是有效的.  相似文献   

13.
结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量进行了预测;然后,与多元回归、偏最小二乘回归、普通支持向量机做误差检验比较,验证该方法的可行性与正确性。结果表明,此天然气消费量预测模型具有较高的精确度和应用价值。  相似文献   

14.
信用分类是信用风险管理中一个重要环节,其主要目的是根据信用申请客户提供的资料从申请客户中区分出可信客户和违约客户,以便为信用决策者提供决策依据.为了正确区分不同的信用客户,特别是违约客户,结合核主元分析和支持向量机算法构造基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型对信用数据进行了分类处理.在基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型中,首先对样本数据进行预处理,然后利用核主元分析以非线性方式降低数据的维数,最后利用带可变惩罚因子最小二乘模糊支持向量机模型对降维后数据进行分类分析.为了验证,选择两个公开的信用数据集来进行实证分析.实证结果表明:基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型取得了较好的分类结果,可为信用决策者提供重要的决策参考依据.  相似文献   

15.
网络入侵诊断直接影响网络正常运行和安全.针对入侵类型复杂,现有分类诊断模型精度有限的问题,提出一种基于邻域粗糙集的网络入侵分类诊断优化模型.首先,运用邻域粗糙集对网络入侵数据进行条件属性的约简,确定关键属性,然后将其作为训练输入构建相关向量机分类诊断模型,并同时运用遗传算法进行超参数优化,提高模型诊断精度和速度.通过KDDCup99数据集对优化模型性能进行检验,结果表明,组合预测方法精确度高于支持向量机、相关向量机和BP神经网络.组合模型诊断精度高、速度快,具有优异的综合性能.  相似文献   

16.
自从Suykens提出新型统计理论学习方法-最小二乘支持向量机(LSSVM)以来,这种方法引起了广泛的关注,它在预测方面的良好性能得到了广泛应用.应用自组织数据挖掘(GMDH)方法改进LSSVM,提升了预测精度.首先利用GMDH方法选择有效的输入变量,再将这些变量作为LSSVM模型的输入,进行时间序列的预测,从而建立LSSVM和GMDH组合的混合模型GLSSVM.并通过汇率时间序列对本文模型进行了实证.结果表明,混合模型预测精度得到了明显的提高.  相似文献   

17.
Several papers have already stressed the interest of latent root regression and its similarities to partial least squares regression. A new formulation of this method which makes it even simpler than the original method to set up a prediction model is discussed. Furthermore, it is shown how this method can be extended not only to the case where it is desired to predict several response variables from a set of predictors but also to the multiblock setting where the aim is to predict one or several data sets from several other data sets. The interest of the method is illustrated on the basis of a data set pertaining to epidemiology.  相似文献   

18.
Kernel logistic regression (KLR) is a very powerful algorithm that has been shown to be very competitive with many state-of the art machine learning algorithms such as support vector machines (SVM). Unlike SVM, KLR can be easily extended to multi-class problems and produces class posterior probability estimates making it very useful for many real world applications. However, the training of KLR using gradient based methods or iterative re-weighted least squares can be unbearably slow for large datasets. Coupled with poor conditioning and parameter tuning, training KLR can quickly design matrix become infeasible for some real datasets. The goal of this paper is to present simple, fast, scalable, and efficient algorithms for learning KLR. First, based on a simple approximation of the logistic function, a least square algorithm for KLR is derived that avoids the iterative tuning of gradient based methods. Second, inspired by the extreme learning machine (ELM) theory, an explicit feature space is constructed through a generalized single hidden layer feedforward network and used for training iterative re-weighted least squares KLR (IRLS-KLR) and the newly proposed least squares KLR (LS-KLR). Finally, for large-scale and/or poorly conditioned problems, a robust and efficient preconditioned learning technique is proposed for learning the algorithms presented in the paper. Numerical results on a series of artificial and 12 real bench-mark datasets show first that LS-KLR compares favorable with SVM and traditional IRLS-KLR in terms of accuracy and learning speed. Second, the extension of ELM to KLR results in simple, scalable and very fast algorithms with comparable generalization performance to their original versions. Finally, the introduced preconditioned learning method can significantly increase the learning speed of IRLS-KLR.  相似文献   

19.
This paper presents a novel knowledge-based linear classification model for multi-category discrimination of sets or objects with prior knowledge. The prior knowledge is in the form of multiple polyhedral sets belonging to one or more categories or classes and it is introduced as additional constraints into the formulation of the Tikhonov linear least squares multi-class support vector machine model. The resulting formulation leads to a least squares problem that can be solved using matrix methods or iterative methods. Investigations include the development of a linear knowledge-based classification model extended to the case of multi-categorical discrimination and expressed as a single unconstrained optimization problem. Advantages of this formulation include explicit expressions for the classification weights of the classifier(s) and its ability to incorporate and handle prior knowledge directly to the classifiers. In addition it can provide fast solutions to the optimal classification weights for multi-categorical separation without the use of specialized solver-software. To evaluate the model, data and prior knowledge from the Wisconsin breast cancer prognosis and two-phase flow regimes in pipes were used to train and test the proposed formulation.  相似文献   

20.
为解决最小二乘支持向量机参数设置的盲目性,利用果蝇优化算法对其参数进行优化选择,进而构建了果蝇优化最小二乘支持向量机混合预测模型.以我国物流需求量预测为例,验证了该模型的可行性和有效性.实例验证结果表明:与单一最小二乘支持向量机和模拟退火算法优化最小二乘支持向量机预测模型相比,该模型不仅能够有效选择参数值,而且预测精度更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号