首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and surface functionalization of biologically relevant silica-based hybrid materials was investigated by 2D solid-state NMR techniques combined with dynamic nuclear polarization (DNP). This approach was applied to a model system of mesoporous silica, which was modified through in-pore grafting of small peptides by solid-phase peptide synthesis (SPPS). To prove the covalent binding of the peptides on the surface, DNP-enhanced solid-state NMR was used for the detection of 15N NMR signals in natural abundance. DNP-enhanced heterocorrelation experiments with frequency switched Lee–Goldburg homonuclear proton decoupling (1H–13C and 1H–15N CP MAS FSLG HETCOR) were performed to verify the primary structure and configuration of the synthesized peptides. 1H FSLG spectra and 1H-29Si FSLG HETCOR correlation spectra were recorded to investigate the orientation of the amino acid residues with respect to the silica surface. The combination of these NMR techniques provides detailed insights into the structure of amino acid functionalized hybrid compounds and allows for the understanding for each synthesis step during the in-pore SPPS.  相似文献   

2.
Nuclear magnetic resonance (NMR) crystallography—an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods—has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29Si NMR spectrum and a single 2D 29Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone.  相似文献   

3.
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in a wide variety of fields. The knowledge about the detailed interactions between MOFs and guest molecules is critical for the understanding of their structure-property relationships at working conditions. In this review, recent advances for solid-state NMR studies of host–guest chemistry of MOFs in the application fields of gaseous adsorption, chemical separation, drug delivery, chemical sensor, and heterogeneous catalysis were briefly introduced. The adsorption property and dynamic behavior of adsorbed gases confined inside the MOFs channels were elucidated from variable-temperature (VT) solid-state NMR. Moreover, the detailed mechanism of gas-phase and liquid-phase adsorptive separations on MOFs adsorbents was uncovered on the basis of solid-state NMR measurements. Multi-nuclear 1H, 13C, 15N, and 31P MAS NMR was utilized to explore the interactions between drug molecules and MOFs at the atomic scale to monitor the controlled release process of drugs. Furthermore, the investigation of the interactions between guest molecules and MOFs in the application areas of chemical sensor, toxic chemicals removal, and catalysis using solid-state NMR was briefly discussed as well.  相似文献   

4.
Magic-angle-spinning (MAS) enhances sensitivity and resolution in solid-state nuclear magnetic resonance (NMR) measurements. MAS is obtained by aerodynamic levitation and drive of a rotor, which results in large centrifugal forces that may affect the physical state of soft materials, such as polymers, and subsequent solid-state NMR measurements. Here, we investigate the effects of MAS on the solid-state NMR measurements of a polymer electrolyte for lithium-ion battery applications, poly(ethylene oxide) (PEO) doped with the lithium salt LiTFSI. We show that MAS induces local chain ordering, which manifests itself as characteristic lineshapes with doublet-like splittings in subsequent solid-state 1 H, 7 Li, and 19 F static NMR spectra characterizing the PEO chains and solvated ions. MAS results in distributions of stresses and hence local chain orientations within the rotor, yielding distributions in the local magnetic susceptibility tensor that give rise to the observed NMR anisotropy and lineshapes. The effects of MAS were investigated on solid-state 7 Li and 19 F pulsed-field-gradient (PFG) diffusion and 7Li longitudinal relaxation NMR measurements. Activation energies for ion diffusion were affected modestly by MAS. 7Li longitudinal relaxation rates, which are sensitive to lithium-ion dynamics in the nanosecond regime, were essentially unchanged by MAS. We recommend that NMR researchers studying soft polymeric materials use only the spin rates necessary to achieve the desired enhancements in sensitivity and resolution, as well as acquire static NMR spectra after MAS experiments to reveal any signs of stress-induced local ordering.  相似文献   

5.
Fluorocarbon groups were used to modify the pore channels of ethane-bridged periodic mesoporous organosilica by the co-condensation of 1,2-Bis(triethoxysilyl)ethane (BTESE) and trifluoropropyltrimethoxysilane (TFPTMS) in the presence of Poly(ethylene glycol)-B-Poly(propylene glycol)-B-Poly(ethylene glycol) (P123) surfactants under acidic conditions. The functionalized materials were investigated in detail by means of XRD, TEM, FT-IR, solid-state NMR, and N2 adsorption. The effect of fluorocarbon groups concentration on the mesoscopic order and pore structure of the functionalized materials was also studied. The results show that bridging groups in the framework do not cleave and fluorocarbon groups are attached covalently to the pore wall of periodic mesoporous organosilica after functionalization. The samples functionalized with 20% TFPTMS remain desired mesoporous architecture, with a narrow pore size distribution centered at 4.1 nm, a large surface of 834 m2/g and a pore volume of 0.91 cm3g−1, without pronounced change compared to the pure periodic mesoporous organosilica. Unfortunately the functionalized materials become structurally disordered with increasing amount of fluorocarbon groups.  相似文献   

6.
Two alternative methods to prepare organically modified porous hydroxyapatites following a “one pot” approach were compared. The partial substitution of inorganic phosphates by alkylphosphonates leads to mesoporous materials with high specific surface area (>200 m2 g−1). The incorporation of the organic moieties within the hydroxyapatite structure is confirmed by Infra-red and solid-state NMR spectroscopy and depends on the nature of the alkyl chain. However, it induces a significant loss of the material crystallinity. In contrast, the introduction of citrate, a calcium-chelating agent, to the precursor solution does not improve the material specific surface area but allows a better control of the hydroxyapatite structure, both in terms of crystallinity and pore size distribution.  相似文献   

7.
Adsorption - 2H solid-state NMR represents a reliable method for probing the dynamics of the molecules in confined geometries, including microporous and mesoporous materials such as zeolites or...  相似文献   

8.
Ancient vegetable tanned leathers and parchments are very complex materials in which both different manufacturing and deterioration processes make their study and chemical characterisation difficult. In this research, solid-state nuclear magnetic resonance (NMR) spectroscopy was applied to identify different tannin families (condensed and hydrolysable) in historical leather objects such as bookbindings, wall upholsters, footwear and accessories, and military apparel. Furthermore, leather deterioration with special focus on collagen gelatinisation was investigated. A comparison with Fourier transform infrared (FTIR) spectroscopy and micro-differential scanning calorimetry (micro-DSC) was also performed to support the 13C CP-MAS NMR findings and to point out the advantages and limitations of solid-state NMR in analysing historical and archaeological leathers. A wide database of NMR and FTIR spectra of commercial tannins compounds was also collected in order to characterise historical and archaeological leathers.  相似文献   

9.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

10.
Convenience food products tend to alter their quality and texture while stored. Texture-giving food components are often starch-rich ingredients, such as pasta or rice. Starch transforms depending on time, temperature and water content, which alters the properties of products. Monitoring these transformations, which are associated with a change in mobility of the starch chain segments, could optimize the quality of food products containing multiple ingredients. In order to do so, we applied a simple and efficient in situ 13C solid-state magic angle spinning (MAS) NMR approach, based on two different polarization transfer schemes, cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT). The efficiency of the CP and INEPT transfer depends strongly on the mobility of chain segments—the time scale of reorientation of the CH-bond and the order parameter. Rigid crystalline or amorphous starch chains give rise to CP peaks, whereas mobile gelatinized starch chains appear as INEPT peaks. Comparing 13C solid-state MAS NMR experiments based on CP and INEPT allows insight into the progress of gelatinization, and other starch transformations, by reporting on both rigid and mobile starch chains simultaneously with atomic resolution by the 13C chemical shift. In conjunction with 1H solid-state MAS NMR, complementary information about other food components present at low concentration, such as lipids and protein, can be obtained. We demonstrate our approach on starch-based products and commercial pasta as a function of temperature and storage.  相似文献   

11.
Understanding the relationship between molecular design and packing modes constitutes one of the major challenges in self-assembly and is essential for the preparation of functional materials. Herein, we have achieved high precision control over the supramolecular packing of amphiphilic PtII complexes by systematic variation of the hydrophilic side-chain length. A novel approach of general applicability based on complementary X-ray diffraction and solid-state NMR spectroscopy has allowed us to establish a clear correlation between molecular features and supramolecular ordering. Systematically increasing the side-chain length gradually increases the steric demand and reduces the extent of aromatic interactions, thereby inducing a gradual shift in the molecular packing from parallel to a long-slipped organization. Notably, our findings highlight the necessity of advanced solid-state NMR techniques to gain structural information for supramolecular systems where single-crystal growth is not possible. Our work further demonstrates a new molecular design strategy to modulate aromatic interaction strengths and packing arrangements that could be useful for the engineering of functional materials based on PtII and aromatic molecules.  相似文献   

12.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

13.
Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29Si CP-MAS NMR, and N2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16.  相似文献   

14.
At low concentrations of cetyltrimethylammonium bromide,all silica-based mesoporous materials with hexagonal phase have been synthesized via interactions between self-assembled surfactant molecule aggregates and aniomc silicate polymers.The resulting materials are characterized by XRD,FT-IR,solid state 29Si MAS NMR,thermal analysis and N2 adsorption-desorption measurements.After soluble ions are removed,the interactors between surfactant micelles and silicate polymers are reorganized and then form mesostructures 1 he hexagonal framework is sonsistent with amorphous silica gel.The structures of materials depend on the synthesis conditions Hydrothermal process improves the interactions between molecules and increases the degree of framework silicon atom polymerization The.surface area and the mesopore volume of the material prepared at 100℃ increase by 87% and 71 %,respectively,compared with those obtained at room temperature.  相似文献   

15.
This work describes the development of highly efficient human DNA separation with functionalized mesoporous silica (FMS) materials. To demonstrate the electrostatic interaction effect between the target DNA molecules and FMS, three aminofunctionality types comprised of a mono-, a di-, and a tri-amine functional group were introduced on the inner surfaces of mesoporous silica particles. Systematic characterization of the synthesized materials was achieved by solid-state 29Si and 13C-NMR techniques, BET, FT-IR, and XPS. The DNA separation efficiency was explored via the function of the amino-group number, the amount used, and the added NaCl concentration. The DNA adsorption yields were high in terms of the use of triaminofunctionalized FMS at the 10 ng/L level, and the DNA desorption efficiency showed the optimum level at over 3.0 M NaCl concentration. The use of FMS in a DNA separation process provides numerous advantages over the conventional silica-based process.  相似文献   

16.
Ibuprofen molecules have been encapsulated in mesoporous MCM-41 type-silica functionalised or not by amino groups. They have been characterised by 13C and 1H solid state NMR spectroscopy. The 13C MAS single pulse or cross polarization NMR spectra, as well as the 1H MAS NMR spectra demonstrate an extremely high mobility of the ibuprofen molecules when the matrix is not functionalised. On the contrary, when the silica matrix is functionalized by amino groups, the 13C NMR response shows less mobility suggesting the existence of interactions between the amino groups and the carboxylic groups. Benzoic acid as well as benzamide have also been encapsulated and their NMR responses compared to that of ibuprofen.  相似文献   

17.
The development of green and sustainable materials for use as heterogeneous catalysts is a growing area of research in chemistry. In this paper, mesoporous SiO2-Al2O3 mixed oxide catalysts with different Si/Al ratios were prepared via hydrolytic (HSG) and nonhydrolytic sol-gel (NHSG) processes. The HSG route was explored in acidic and basic media, while NHSG was investigated in the presence of diisopropylether as an oxygen donor. The obtained materials were characterized using EDX, N2-physisorption, powder XRD, 29Si, 27Al MAS-NMR, and NH3-TPD. This approach offered good control of composition and the Si/Al ratio was found to influence both the texture and the acidity of the mesoporous materials. According to 27Al and 29Si MAS NMR analyses, silicon and aluminum were more regularly distributed in NHSG samples that were also more acidic. Silica–alumina catalysts prepared via NHSG were more active in esterification of acetic acid with n-BuOH.  相似文献   

18.
A novel approach to the synthesis of spirobicyclic Janovsky complexes is described. The complexes were prepared on silica and polystyrene polymeric supports as well as on a solution-borne poly(carbodiimide) polymer with 100% atom economy. A carbon-centered intramolecular de-aromatizing nucleophilic aromatic substitution ipso-cyclization mechanism describes the synthesis of these spirobicyclics. The molecules were characterized by solution and solid-state 1H and 13C NMR, IR, and MS.  相似文献   

19.
A heterogeneous Janus-type palladium interphase catalyst was obtained by selective surface modification of a hollow mesoporous silica material. The catalyst comprises hydrophobic octyl groups on one side of the silica nanosheets and single-site bis-imidazoline dichlorido palladium(II) complexes on the other. The structure of this composite material has been analyzed by means of elemental analysis, atomic absorption spectroscopy, BET surface analysis, TGA, SEM and solid-state CP-MAS 13C and 29Si NMR spectroscopy. The catalyst showed extraordinary activity for the aqueous-phase oxidation of styrene to acetophenone using 30% hydrogen peroxide as the oxidant. An 88% yield of acetophenone could be achieved after 60 min.  相似文献   

20.
Cubic mesoporous titanium phosphonate materials with bridged organic groups inside the framework were synthesized by means of a one‐pot hydrothermal autoclaving process, with the assistance of cationic surfactant cetyltrimethylammonium bromide. 1‐Hydroxyethylidene‐1,1‐diphosphonic acid was used as the coupling molecule. A typical cubic mesophase with surface area of 1052 m2 g?1 and pore size of 2.6 nm was confirmed by XRD, TEM, and N2 sorption analysis. The organophosphonate groups were homogeneously incorporated in the network of the mesoporous solids, as revealed by FTIR and magic‐angle spinning (MAS) NMR spectroscopy, and thermogravimetry and differential scanning calorimetry (TG‐DSC) measurements. The synthesized hydroxyethylidene‐bridged cubic mesoporous titanium phosphonates proved to be thermally stable up to 350 °C, with a well‐preserved hybrid framework and cubic mesoporous architecture. The obtained cubic mesophase could be transformed into a hexagonal mesophase by simply adjusting the molar ratios of the added raw materials, namely, a Ti/P molar ratio of 1:4 and a CTAB/Ti molar ratio of 1.9–2.3 for the cubic phase and Ti/P molar ratio of 3:4 and CTAB/Ti molar ratio of 0.1–0.4 for the hexagonal phase. The cubic hybrid materials could be used as efficient photocatalysts for the photodegradation of rhodamine B. Moreover, they were also used for adsorption of CO2 and heavy metal ions and exhibited a significant capture amount of around 1.0 mmol g?1 for CO2 molecules at 35 °C and high adsorption capacity of 28.5 μmol g?1 for Cu2+ ions with good reusability, which demonstrated their promising potential in environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号