首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A new fiber based on titania‐chitin sol‐gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250°C) was obtained. The proposed headspace solid‐phase microextraction‐GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.  相似文献   

2.
Dynamic three-phase hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) based on two immiscible organic solvents, with automated movement of organic acceptor phase to facilitate mass transfer was introduced for the first time. Polycyclic aromatic hydrocarbons were used as model compounds and extracted from water and soil samples. The extraction involved filling an 8 cm length of hollow fiber with 25 μL of organic acceptor solvent using a microsyringe, followed by impregnation of the pores in the fiber wall with n-dodecane. The fiber was then immersed in 20 mL of aqueous sample solution. During extraction, the organic acceptor phase was repeatedly moved in the lumen of the hollow fiber by movement of the syringe plunger controlled by programmable syringe pump. Following this microextraction, 2 μL of organic acceptor phase was injected into gas chromatography-flame ionization detector. This new technique provided up to 554-fold preconcentration of the analytes under the optimized conditions. Good repeatabilities (with RSDs ≤8.4%) were obtained. Detection limits were in the range of 0.2-0.5 μg/L. The utilization of the proposed method for extraction of the polycyclic aromatic hydrocarbons from different real samples (such as water and soil samples) also gave good precision and recovery.  相似文献   

3.
A novel technique utilizing the adsorptive potential of immobilized multi‐walled carbon nanotubes (I‐MWCNT) in hollow fiber liquid‐phase microextraction (HF‐LPME) was developed for the determination of diuretics in urine. In this study, the potential of carbon nanotubes as a sorbent for three‐phase liquid‐phase microextraction of diuretics from urine samples was evaluated. Analysis was performed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). A novel method was applied to detect acetazolamide (AAA), chlorothiazide (CTA), hydrochlorothiazide (HCT), hydroflumethiazide (HFT), clopamide (CA), trichlormethiazide (TCM), althiazide (AT) and bendroflumethiazide (BFT) in urine. Two‐step extractions using different times and temperatures for each step were adopted. Parameters influencing the extraction efficiency, including the extraction solvent, sample pH, salt concentration, extraction time and extraction temperature were systematically optimized. Under the resulting optimal extraction conditions, this method showed good linearity over an analytes concentration range of 1 to 1000 ng/mL, high extraction repeatability with relative standard deviations of less than 6%, and low detection limits (0.09 to 0.51 ng/mL). The application of the methods to the determination of diuretics in real samples was tested by analyzing urine samples of patient.  相似文献   

4.
Dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high‐performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1‐Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid–liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high‐density and toxic solvents of traditional dispersive liquid–liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy.  相似文献   

5.
A new type of liquid‐phase microextraction based on two immiscible organic solvents was optimized and validated for the quantification of lidocaine, ketamine, and cocaine in human urine samples. A hollow‐fiber based microextraction technique followed by gas chromatography coupled with mass spectrometry detection was used to reduce matrix interferences and improve limits of detection. The analytes were extracted from aqueous sample with pH 11.0, into a thin layer of organic solvent (n‐dodecane) sustained in the pores of a hollow fiber, and then into a second organic acceptor (acetonitrile) located inside the lumen of the hollow fiber. With the application of optimized values, good linearity was obtained in the range of 1–500 μg/L for lidocaine and ketamine and 2–500 μg/L for cocaine with the determination coefficient values (r2) >0.9943. The preconcentration factors and limits of detection (S/N > 3) were 250–350 and 0.01–0.05 μg/L, respectively. Intra and interassay precision values were <7.3 and 9.3%, respectively. The method was successfully applied for the determination and quantification of target analytes in human urine samples.  相似文献   

6.
Ultrasound-assisted emulsification microextraction and dispersive liquid-liquid microextraction were compared for extraction of ephedrine, norephedrine, and pseudoephedrine from human urine samples prior to their determination by capillary electrophoresis. Formation of a microemulsion of the organic extract with an aqueous solution (at pH 3.2) containing 10% methanol facilitated the direct injection of the final extract into the capillary. Influential parameters affecting extraction efficiency were systematically studied and optimized. In order to enhance the sensitivity further, field-amplified sample injection was applied. Under optimum extraction and stacking conditions, enrichment factors of up to 140 and 1750 as compared to conventional capillary zone electrophoresis were obtained resulting in limits of detection of 12-33 μg/L and 1.0-2.8 μg/L with dispersive liquid-liquid microextraction and ultrasound-assisted emulsification microextraction when combined with field-amplified sample injection. Calibration graphs showed good linearity for urine samples by both methods with coefficients of determination higher than 0.9973 and percent relative standard deviations of the analyses in the range of 3.4-8.2% for (n = 5). The results showed that the use of ultrasound to assist microextraction provided higher extraction efficiencies than disperser solvents, regarding the hydrophilic nature of the investigated analytes.  相似文献   

7.
Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol–gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol–gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol–gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L−1 (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L−1 for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.  相似文献   

8.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

9.
A new technique for the analysis of volatile aromatic hydrocarbons by combining liquid-liquid microextraction with solid phase microextraction has been developed. The analytes were extracted from aqueous samples by an immobilized polydimethylsiloxane fiber assisted by the droplets of an appropriate organic solvent. Benzene, toluene, ethylbenzene, and o-xylene were used as target analytes. The main factors potentially affecting the microextraction such as the nature and the volume of organic solvent, polydimethylsiloxane (PDMS) swelling, extraction time, agitation, temperature, and salts were optimized. The method requires a very low consumption of organic solvent. The relative enrichment factor is in the range of 7.1-32.4 for extraction in the presence of dichloromethane at an optimum volume of 18 μL mL(-1) of aqueous sample. This enhancement over regular polydimethylsiloxane fiber is primarily the result of the fiber swelling and of a stable thin layer of organic solvent attached to the surface of the PDMS fiber. The limit of detection ranges from 0.02 to 0.65 ng mL(-1) for the target compounds using a 7-μm bonded polydimethylsiloxane coating and a flame ionization detector. The validity of this method is demonstrated by the analysis of a real waste water sample.  相似文献   

10.
Summary The applicability of multiple solid-phase microextraction to the analysis of biological samples has been shown by extraction of a variety of compounds from human urine. Multiple solid-phase microextraction, in which extraction and desorption are repeated and analytes are collected at the head of the separation system before starting the analysis, has been combined with gas chromatography. Amphetamine, lidocaine, procaine, and mepivacaine were extracted from buffered urine by direct immersion of a 100-μm polydimethylsiloxane-coated fiber, to demonstrate that multiple SPME can be used for analytes with different extraction behavior. Multiple solid-phase microextraction was optimized for high extraction yield or short extraction time. For example, the total sample-handling time (extraction plus desorption) for the extraction of mepivacaine from urine can be reduced from approximately 60 min (one extraction) to 33 min (three extractions) without reducing extraction yield. In addition, the extraction yield for mepivacaine can be increased from 14.6% (one extraction) to 27.0% (five extractions) within the same total sample handling time of approximately 60 min. A good match between theoretical and experimental values was obtained. Chromatograms are shown to illustrate the usefulness of the procedure.  相似文献   

11.
A novel C18 functionalized graphene oxide (GO) coated solid-phase microextraction fiber was prepared by a novel protocol. Based on the strong van der Waals interaction present in GO and abundant oxygenous groups in GO sheets, a simple layer-by-layer self-assembly method was used in the preparation process and then C18 was successfully self-assembled on GO via C-O-Si bonding. Coupled with gas chromatography, extraction performance of the fiber was tested with polycyclic aromatic hydrocarbons (PAHs) as model analytes. The fiber not only exhibited excellent extraction efficiency and selectivity, but also showed many advantages including high rigidity, long service life and well stability toward organic solvent, acidic and alkali solutions, and high temperature. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 7.26 and 17.25%, respectively. The detection limits to the PAHs were less than 0.08 μg L(-1) and the calibration curves were linear in a wide range for all analytes. The as-established Solid-phase microextraction GC method was also successfully used for determination of PAHs in two real water samples.  相似文献   

12.
Feng J  Sun M  Liu H  Li J  Liu X  Jiang S 《Journal of chromatography. A》2010,1217(52):8079-8086
A novel solid-phase microextraction fiber based on a stainless steel wire coated with Au nanoparticles was prepared and has been applied, coupled with gas chromatography, to the extraction of aromatic hydrophobic organic chemical pollutants in rainwater and soil extract. The solid-phase microextraction fiber exhibited excellent extraction efficiency and selectivity. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized. Single fiber repeatability and fiber-to-fiber reproducibility were less than 7.90% and 26.40%, respectively. The calibration curves were linear in a wide range for all analytes. Correlation coefficients ranged from 0.9941 to 0.9993. The as-established SPME-GC method was used successfully to two real natural samples. Recovery of analytes spiked at 10 μg L(-1) and 100 μg L(-1) ranged from 78.4% to 119.9% and the relative standard deviations were less than 11.3%.  相似文献   

13.
A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid‐phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless‐steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory‐designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one‐at‐a‐time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1–3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001–20 ng/mL (R2 > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber‐to‐fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.  相似文献   

14.
An automated three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high‐performance liquid chromatography with UV–Vis detection method was applied for the extraction and determination of exemestane, letrozole, and paclitaxel in water and urine samples. n‐Dodecane was selected as the supported liquid membrane and its polarity was justified by trioctylphosphine oxide. Acetonitrile was used as an organic acceptor phase with desirable immiscibility having n‐dodecane. All the effective parameters of the microextraction procedure such as type of the organic acceptor phase, the supported liquid membrane composition, extraction time, pH of the donor phase, hollow fiber length, stirring rate, and ionic strength were evaluated and optimized separately by a one variable at‐a‐time method. Under the optimal conditions, the linear dynamic ranges were 1.8–200 (R2 = 0.9991), 0.9–200 (R2 = 0.9987) and 1.2–200 μg/L (R2 = 0.9983), and the limits of detection were 0.6, 0.3, and 0.4 μg/L for exemestane, letrozole, and paclitaxel, respectively. To evaluate the capability of the proposed method in the analysis of biological samples, three different urinary samples were analyzed under the optimal conditions. The relative recoveries of the three pharmaceuticals were in the range of 91–107.3% for these three analytes.  相似文献   

15.
Solid phase microextraction (SPME) was applied in the development of a protocol for the analysis of a number of target organic compounds in landfill site samples. The selected analytes, including aromatic hydrocarbons, chlorinated hydrocarbous, and unsaturated compounds, were absorbed directly from a headspace sample above a soil layer onto a fused silica fiber. Following exposure, the fiber was thermally desorbed in the injection port of the gas chromatograph and eluted compounds were detected using a mass selective detector. The stability and sensitivity of the extraction technique were examined at five temperatures (22–60°C) using a 100μm polydimethylsiloxane fiber. Calibrations, using soil samples spiked with selected solvents (0.5–30 μg/g), were linear; trichloroethene (r2 = 0.992) and benzene (r2 = 0.998). SPME was applied to the examination of a municipal landfill where 8 sites were sampled, at three depths, resulting in the detection of xylene (maximum 2.8 μg/g) and a number of other non-target organic contaminants.  相似文献   

16.
The feasibility of single-walled carbon nanotubes (SWCNTs) as adsorbents for solid-phase microextraction was investigated by using organochlorine pesticides (OCPs) as model compounds. SWCNTs were attached onto a stainless steel wire through organic binder. Potential factors affecting the extraction efficiency were optimized, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity. The developed method has a linear range of 2-800 ng/L for most analytes, with coefficients of correlation ranging from 0.9911 to 0.9996, LODs ranged from 0.19 to 3.77 ng/L (S/N = 3), and RSDs in the range of 3.5-13.9% (n = 5). Compared with the commercial PDMS fiber, the SWCNT fiber has better thermal stability (over 350 degrees C) and longer life span (over 150 times). The developed method was applied to determine trace OCPs in lake water and wastewater samples with external standard calibration. Results showed that OCP contamination was very low in these samples, and HCHs were detected in almost all water samples while DDT concentrations were almost under detection limits in these samples. Recoveries obtained at 20 ng/L spiking level were in the range of 88.4-111% for OCPs in lake water. For wastewater samples, however, the recoveries were satisfactory for HCHs (63.6-97.1%) but relatively low for DDTs (44.7-116%) due to the high content of organic matter in wastewater.  相似文献   

17.
The selectivity of a suitable organic solvent is key for extraction in liquid‐phase microextraction experiments. Nevertheless, the screening process remains a daunting task. Our research aimed to study the relationship between extraction efficiency and extraction solvents, analytes, and finally select the appropriate extraction solvent. In the present article, β‐blockers and six extraction solvents were chosen as the models and hollow‐fiber liquid‐phase microextraction was conducted. The relationship was built by statistical analysis on the data. Factors affecting extraction efficiency including the logarithms of the octanol/water partition coefficient (logPo/w) of analytes, acid dissociation constants, the logarithms of the octanol/water partition coefficient of solvents and pH of the sample solution were investigated. The results showed that a low water solubility of extraction solvent is the foundation to ensure higher extraction efficiency. Moreover, when ΔlogPo/w > 0, a higher extraction efficiency is observed at lower ΔlogPo/w, on the contrary, when ΔlogPo/w < 0, extraction efficiency is higher as the absolute value of ΔlogPo/w becomes greater. Finally, the relationship between enrichment factor and extraction solvents, analytes was established and a helpful guidance was provided for the selection of an optimal solvent to obtain the best extraction efficiency by liquid‐phase microextraction.  相似文献   

18.
A combination of hydrodistillation (HD) and liquid-phase microextraction (LPME) has been successfully developed to improve sensitivity and selectivity in attenuated total reflection (ATR) infrared determination of semivolatile organic compounds from high water content plant and food matrices contributing to solve extraction efficiency drawbacks. The HD sampling facilitates the extraction of the semivolatile analytes from the sample matrix compared to headspace sampling, while the liquid-phase microextraction using a water immiscible solvent allows analyte preconcentration prior to ATR analysis. Experimental conditions regarding temperature and time of extraction, water effect and number of consecutive extractions have been deeply studied. The qualitative and quantitative capability of the developed methodology has been evaluated through the identification of the main semivolatile substances in plant and food matrices like spices and citrus peels and the effect of different drying treatments on the volatile composition of rosemary samples was studied through the quantification of camphor and eucalyptol.  相似文献   

19.
Two different modes of three‐phase hollow fiber liquid‐phase microextraction were studied for the extraction of two herbicides, bensulfuron‐methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high‐performance liquid chromatography. For both three‐phase hollow fiber liquid‐phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three‐phase hollow fiber liquid‐phase microextraction with an organic acceptor phase were linear in the range of 0.3–200 and 0.1–150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron‐methyl and linuron, respectively. For the conventional three‐phase hollow fiber liquid‐phase microextraction, the calibration curves were linear in the range of 3.0–250 and 15–400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron‐methyl and linuron, respectively. The real sample analysis was carried out by three‐phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.  相似文献   

20.
A low‐cost and simple cooling‐assisted headspace liquid‐phase microextraction device for the extraction and determination of 2,6,6‐trimethyl‐1,3 cyclohexadiene‐1‐carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling‐assisted headspace liquid‐phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R2 = 0.995) was obtained in the concentration range of 0.01–50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling‐assisted headspace liquid‐phase microextraction device was coupled (off‐line) to high‐performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling‐assisted headspace liquid‐phase microextraction high‐performance liquid chromatography method and those obtained by a validated ultrasound‐assisted solvent extraction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号