首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orthogonal design has been used to the optimization of separation and determination of two active components in traditional Chinese medicines by capillary electrophoresis. The concentration of phosphate, applied voltage, organic modifier content and buffer pH were selected as variable parameters. Their different effects on peak resolution were studied by the experimental design method. Optimized separation conditions were obtained and successfully applied to the separation and determination of aconitine and hypaconitine in Aconitum medicinal herbs. Good separation was achieved within 7 min using a buffer system composed of 20 mmol L−1 phosphate and 35% acetonitrile at pH 9.5. The applied voltage was 14 kV and the detection was set at 235 nm. In addition, a radial basis function neural network with a “4-18-1” structure was developed based on the experimental results of orthogonal design and uniform design, and was applied to the prediction of peak resolution of the two active components under the optimum separation conditions given by orthogonal design. The predicted results were in good agreement with the experimental values, indicating that radial basis function neural network is a potential way for the selection of separation conditions in capillary electrophoresis.  相似文献   

2.
A simple and inexpensive high performance capillary electrophoresis (HPCE) was applied to separate five benzoic acid compounds simultaneously. The investigation was carried out by micellar electrokinetic capillary chromatography (MECC). To avoid a time‐consuming and tedious procedure, orthogonal experimental design OA9 (34) for separation experiments was applied to find the optimal conditions in terms of the resolution and analytical time. The best conditions for separation were obtained using a 20 mM borax and 30 mM sodium dodecyl sulfate (SDS) buffer (pH 9.8) containing 2 mM β‐CD and 4% methanol (v/v). Online UV detection was performed at 250 nm. A voltage of 16 kV was applied and the temperature was controlled at 25 °C. Injection was performed for 5 s. The method was validated for the quantification of benzoic acid, salicylic acid and ortho‐aminobenzoic acid in Radix Isatidis, a traditional plant medicine with removal of endotoxin. The separation and determination were satisfactory and quick.  相似文献   

3.
To optimize the capillary electrophoretic separation conditions for leucine enkephalin (LE) and the immune complex of the LE and anti-LE reaction, an analysis using a three-level, three-factorial Box-Behnken design was performed. Three separation parameters, buffer pH (X(1)), buffer concentration (X(2)), and applied voltage (X(3)), were chosen to observe the effect on separation responses. The responses were theoretical plate number, migration time of the LE peak, and resolution between the peaks. The optimum conditions and process validation were determined using statistical regression analysis and surface plot diagrams. The capillary electrophoresis optimum separation conditions were established to be 75 mM phosphate buffer at pH 7.00 with an applied separation voltage of 15 kV. By using the analysis technique, the prediction of responses was satisfactory and process verification yielded values within the +/-5% range of the predicted efficiency.  相似文献   

4.
The effects of pH on separation parameters such as migration mobility, resolution, sensitivity, column efficiency and peak shape were emphatically studied. Better separation of magnolol and honokiol using capillary zone electrophoresis was achieved by optimizing pH in the range 5.0–11.7. The influences of applied voltage and temperature were also investigated. We adopted a better sample extraction procedure by which higher contents of honokiol and magnolol with sample compositions unchanged were obtained. The analysis was performed with direct UV detection using a 10 mM borate-10 mM phosphate buffer at pH of 11.6. The method was successfully applied to the simultaneous determination of magnolol and honokiol inMagnolia officinalis bark within 9 min.  相似文献   

5.
Ginkgo biloba, traditional Chinese medicine is now generally accepted. Separation and determination of active components in G. biloba is important for the product quality control. Therefore, the development of an effective and reliable separation method is important. In this work, a new capillary electrophoretic (CZE) method for separation of the G. biloba leaf extracts components was developed and optimized by the use of experimental design and artificial neural network (ANN). Under best separation conditions, in gamma-CD-modified buffer, the separation was reached within 10 min (36 mM borate BGE, pH 9.2, 1 mM gamma-CD), while the hydrodynamic mode for sample injection (2 s) and UV detection at 270 nm were applied. The method developed was validated and applied for analysis of various extracts and G. biloba products.  相似文献   

6.
EKC using a neutral CD as chiral selector was applied in this work to the development of a method enabling the enantiomeric separation of ketoconazole and terconazole antifungals. The influence of different experimental conditions such as temperature, CD concentration, pH, and nature and concentration of the buffer on the enantiomeric resolution of the compounds studied was investigated. The use of 10 mM heptakis-(2,3,6-tri-O-methyl)-beta-CD in a 100 mM phosphate buffer (pH 3.5) with a temperature of 15 degrees C allowed the separation of the enantiomers of ketoconazole and terconazole with high resolution (R(s) > 2.0). The rapid separation of ketoconazole enantiomers with an analysis time less than 3 min was carried out after fitting some experimental parameters. The developed method was applied to the determination of ketoconazole in different pharmaceutical formulations.  相似文献   

7.
Micellar electrokinetic capillary chromatography (MEKC) has been developed as a promising method for the determination of lignans in plant samples. The separation conditions have been optimized with respect to the different parameters including sodium dodecyl sulfate (SDS) and acetonitrile concentration, pH of the background electrolyte, separation voltage, and capillary temperature. The background electrolyte consisting of 40 mM SDS and 35% acetonitrile in 10 mM tetraborate buffer (pH 9.3) was found to be the most suitable electrolyte for this analysis. The applied voltage of 28 kV (positive polarity) and the capillary temperature 25 degrees C gave the best separation of lignans. The interday reproducibility of the peak areas and the migration times was below 2.0%. The results of MEKC analyses were compared with those obtained by capillary electrochromatography (CEC) and reversed-phase high-performance liquid chromatography (RP-HPLC). The possibilities of using this method for the determination of lignans in drug and in serum samples were also tested.  相似文献   

8.
This work reported that ionic liquid (IL) ([Bmim] [PF6]) and sulfobutylether‐β‐CD (SBE‐β‐CD) were used as electrolyte additives for the separation and determination of camptothecin (CPT) alkaloids by CZE. Separation parameters such as the buffer type, pH, and concentration of the running buffer, the concentration of SBE‐β‐CD and IL, temperature, and separation voltage were all investigated in order to achieve the maximum possible resolution. The four analytes were baseline separated within 10 min in capillary at the separation voltage of 15 kV with a running buffer consisting of 20 mM borate buffer, 20 mM IL, and 100 mM SBE‐β‐CD at pH 9.0. Under such conditions, good linearity about two orders of magnitudes of peak areas was achieved for the investigated CPT alkaloids with the correlation coefficients ranging from 0.9946 to 0.9985. For all analytes, detection limits (S/N = 3) and quantitation limits (S/N = 10) range from 0.05 to 0.92 μg/mL and 0.17 to 3.06 μg/mL, respectively. The proposed method has not only been successfully applied to the separation and determination of CPT alkaloids but also showed that IL seemed to be a promising additive in CZE separation.  相似文献   

9.
A method for the determination of isoniazid (ISO), pyrazinamide (PYR) and rifampicin (RIF) in pharmaceutical products, by micellar electrokinetic capillary chromatography (MEKC) with ultraviolet detection is described. The influence of pH, concentration of surfactants, buffer and organic solvents, over the separation were studied as experimental variables. The optimal separation was carried out at 30 degrees C and 20 kV, using a 40 mM borate buffer and 100 mM sodium dodecylsulphate (SDS) adjusted to pH 8.5. Under these conditions, the analysis is accomplished in about 8 min. The method was applied to the determination of these compounds in different pharmaceuticals with good results when compared with a reference liquid chromatographic (LC) method.  相似文献   

10.
A capillary zone electrophoretic method has been developed for the determination of four coumarins--skimmin, scopolin, scopoletin, and umbelliferone-in Saussurea superba with UV detection at 254 nm. The capillary temperature was kept constant at 25 degrees C. Effects of buffer pH, electrolyte concentration, organic modifier, and applied voltage on migration behavior were studied systematically. The optimum conditions for separation were achieved by using 30 mM borate buffer at pH 9.02 containing 15% (v/v) methanol as the electrolyte and 25 kV as the applied voltage. For all analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, and accuracy. The validated method was successfully applied to the simultaneous determination of the four analytes in S. superba.  相似文献   

11.
The aim of this work was to optimize conditions for capillary electrophoresis separation of different neurotransmitters (serotonin, phenylalanine, dopamine, adrenaline, ephedrine, propranolol and DOPA) in a single run, including separation of existing enantiomers. As chiral selectors added to the borate background, electrolyte unsubstituted alpha-, beta- and -gamma-cyclodextrins (CDs), methyl-, dimethyl-, and trimethyl-substituted beta-CDs, and hydroxypropyl-substituted alpha-, beta- and gamma-CDs were examined. Also carboxymethyl-beta-CD and succinyl-beta-CD were used for this purpose. In addition to the kind and concentration of chiral selector, some other experimental factors also have been optimized, such as concentration of borate buffer, content of methanol, pH of electrolyte, method of sample introduction into the capillary and washing procedure between consecutive runs. The best results were obtained using 20 mM carboxymethyl-beta-CD in borate buffer of pH 7.5 as running electrolyte and hydrostatic injection. The obtained sensitivity of response (peak height) varied from 0.4 for adrenalines to 2.3 mAU mM(-1) for propranolols. The concentration detection limits (S/N=3) were in the range from 0.04 mM for propranolols to 0.2 mM for adrenalines. The resolution obtained in optimized conditions in a single run was from 0.75 for adrenalins and 1.0 for propranolols up to 2.0 for ephedrines. The developed method was employed for determination of these analytes in brain tissue extracts.  相似文献   

12.
In this study both native and chemically modified cyclodextrins (CDs) were investigated as buffer additives to improve the micellar electrokinetic capillary chromatography (MEKC) separation of endogenous bioanalytes in human urine. The following CDs were investigated: alpha, beta, gamma-CDs; hydroxypropyl-alpha-CD, hydroxypropyl-beta-CD, methylated beta-CD, sulphated beta-CD, sulphobutyl ether-beta-CD and hydroxypropyl-gamma-CD. The separations were compared to MEKC without additives. The best improvement in peak resolution and separation of urine components was observed with the sulphated beta-CD. A four-factor three-level full factorial design study was conducted on voltage, temperature, pH and sulphated beta-CD molarity. The optimum conditions were 25 mM sodium tetraborate, pH 9.5, 75 mM sodium dodecyl sulphate (SDS) and 6.25 mM sulphated beta-CD and were able to resolve 70 peaks from a urine pool in 12 min. These optimum conditions have been successfully applied to a number of clinical samples.  相似文献   

13.
An easy, rapid and sensitive method of analysis for capsaicin and dihydrocapsaicin and its application for determination of these two amides in fruit extracts of different varieties of Capsicum frutescens by micellar electrokinetic capillary chromatography has been developed. Optimum separation was achieved with a fused-silica capillary column (600 mm x 0.075 mm I.D) and a running buffer at pH 9.0 prepared from 15 mM sodium tetraborate and 15 mM sodium dihydrogenphosphate, and 67.5 mM sodium dodecyl sulphate. Addition of 15% (v/v) methanol in the running buffer was found to be essential for the separation. The applied voltage was +22.5 kV. The compounds were detected by UV at 214 nm. Both capsaicin and dihydrocapsaicin were detected within 11 min, with an excellent resolution.  相似文献   

14.
A high-performance capillary electrophoresis (HPCE) was successfully applied to the separation and quantitation of naturally occurring oleanene triterpenoidal saponins. The HPCE adapted to the separation of two pairs of disteriomeric saponins (1-2) or (3-4), obtained from Trifolium alexandrinum seeds, was based on capillary zone electrophoresis (CZE) in borate buffer with UV detection at 195 nm. An usual technique for isolation and group separation of saponins was developed as an appropriate purification step prior to determination of individual saponins by CZE. The separation parameters such as borate concentration, pH and applied voltage were varied in order to find the best compromise that complied with demands for high separation, short duration and sufficiently high detector response. The optimum running conditions were found to be 60 mM borate buffer, pH 10 and 12 kV. Under the alkaline borate electrolyte, no resolution was achieved for the saponins (1 and 3) or (2 and 4) in a single mixture, except when 20 mM beta-cyclodextrin was added to the running electrolyte. With the combined techniques of group separation, purification and CZE, a rapid and efficient method for the determination of naturally occurring diasteriomeric saponins is now available.  相似文献   

15.
A capillary electrophoresis (CE) method has been developed that allows the separation and estimation of primaquine enantiomers using hydroxypropyl-gamma-cyclodextrin (HP-gamma -CD) as a chiral selector. The influence of chemical and instrumental parameters on the separation, such as type and concentration of CD, buffer concentration, buffer pH, applied voltage, capillary temperature, and injection time, were investigated. Good separation of the racemic mixture of primaquine was achieved using a fused-silica capillary (52.5 cm effective length x 50 microm id) and a background electrolyte composed of tris-phosphate buffer solution (50 mM, pH 2.5) containing 15 mM HP-gamma-CD as a chiral selector. The recommended applied voltage, capillary temperature, and injection time were 15 kV, 25 degrees C, and 6 s, respectively. Within-day and interday reproducibility of peak area and migration time gave relative standard deviation values ranging from 1.05-3.30%. Good recoveries (range of 96.8-104.9%) were obtained from the determination of placebos that were spiked with 0.25-1.00 mg/L primaquine. The proposed CE method was successfully applied to the assay of primaquine diphosphate in pharmaceutical formulations (tablets).  相似文献   

16.
Orthogonal design and uniform design were used for the optimization of separation of enantiomers using 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD) as a chiral selector by capillary zone electrophoresis. The concentration of DM-β-CD, buffer pH, running voltage, and capillary temperature were selected as variable parameters, their different effects on peak resolution were studied by the design methods. It was concluded that orthogonal design offers a rapid and efficient means for testing the importance of individual parameters and for determining the optimum operating conditions. However, for a large number of both factors and levels, uniform design is more efficient. The effect of addition of methanol and citric acid buffer on the separation of enantiomers was also examined.  相似文献   

17.
The enantiomers of vildagliptin, an orally available and selective dipeptidyl‐peptidase‐4 inhibitor used for the treatment of type II diabetes, have been separated by CD‐modified CZE, using uncoated fused‐silica capillary. After screening 13 negatively charged CD derivatives as potential chiral selectors, sulfobutyl‐ether‐α‐CD (SBE‐α‐CD) was selected for the enantioseparation. For the optimization, a factorial analysis study was performed by orthogonal experimental design. Six experimental factors were chosen as variable parameters: temperature, applied voltage, chiral selector and BGE concentrations, pH, and the parameters of the hydrodynamic injection. The optimized system still was not considered final as the second peak (S‐enantiomer) migrated too close to the EOF, resulting in a potential inaccuracy during the determination of the chiral impurity. To fine‐tune the method “one factor at a time” variation approach was applied. The final method (applying 15°C capillary temperature, 40 mbar × 4 s hydrodynamic injection, 25 kV voltage in 75 mM acetate‐Tris buffer [pH 4.75] containing 20 mM SBE‐α‐CD as chiral selector) was validated according to the ICH guideline. RSD percentage of the resolution value, migration times, and corrected peak areas were below 5% during testing repeatability and intermediate precision. LOD and LOQ values were found to be 2.5 and 7.5 μg/mL, respectively. The method is considered linear in the 7.5–180 μg/mL range for the R‐enantiomer. The robustness of the method was justified using Plackett–Burmann statistical experimental design.  相似文献   

18.
The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1-propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED-ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day-to-day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.  相似文献   

19.
A method was developed for the determination of phosphoamino acids by capillary zone electrophoresis-laser-induced fluorescence detection (argon ion laser, excitation at 488 nm and emission at 520 nm) using derivatization with N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA). Different variables affecting the derivatization (SIFA concentration, derivatization pH, reaction temperature and reaction time) and the separation (type, pH and concentration of buffer, applied voltage and injection mode) were investigated in detail. The optimized separation conditions were 40 mM boric acid buffer (pH 9.2) for background electrolyte, 25 kV for the separation voltage, 25 degrees C for the capillary temperature and 5 s at 0.5 psi for the sample injection. Under the optimal conditions, the SIFA-labeled phosphoamino acids were fully separated within 7 min. The detection limits ranged from 0.1 to 0.3 nM, which are the lowest values reported for capillary electrophoresis (CE) methods. The proposed methodology allowed the rapid, sensitive and selective determination of phosphoamino acids in hen egg yolk phosvitin by the standard addition method. The recovery of these compounds in real sample was 94.0-103.5%. The developed method surpasses previously published CE methods in terms of detection limit, separation time, stability and simplicity of the electrophoretic procedure.  相似文献   

20.
A fast and highly selective micellar electrokinetic capillary chromatography (MEKC) method for quantitative analysis of vancomycin and related impurities is described. Among the tested surfactants, cetyltrimethylammonium chloride (CTAC) offered the best selectivity. Another important parameter, which strongly influenced the selectivity, was buffer pH. It was found that the selectivity increased with buffer pH decreasing from 9 to 5. Using Tris-phosphate buffer containing CTAC, satisfactory separation could be obtained in the pH range from 5.0 to 5.5. Excellent repeatability in terms of migration time and peak area could be obtained when the capillary was carefully washed between two runs. In order to obtain optimal conditions and to evaluate the method robustness, a central composite experimental design was carried out. The optimal conditions were: 44 cm length of fused-silica capillary with 50 microm ID, 120 mM Tris-phosphate buffer (pH 5.2) containing 50 mM CTAC, -15 kV applied voltage, UV detection at 210 nm, and a column temperature of 25 degrees C. Under the optimal conditions, more than 20 peaks could be separated within 8 min. The method has a linearity range from 0.004 to 1.2 mg/ml (concentration of vancomycin B, active component). The limit of detection (LOD) and limit of quantitation (LOQ) were 0.4 microg/mL vancomycin, equivalent to 0.3 microg/mL vancomycin B (0.04%) and 1.1 microg/mL vancomycin, equivalent to 0.9 microg/mL vancomycin B (0.1%), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号