首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we will study the stability properties of self-similar solutions of $1$ D cubic NLS equations with time-dependent coefficients of the form 0.1 $$\begin{aligned} \displaystyle { iu_t+u_{xx}+\frac{u}{2} \left(|u|^2-\frac{A}{t}\right)=0, \quad A\in \mathbb{R }. } \end{aligned}$$ The study of the stability of these self-similar solutions is related, through the Hasimoto transformation, to the stability of some singular vortex dynamics in the setting of the Localized Induction Equation (LIE), an equation modeling the self-induced motion of vortex filaments in ideal fluids and superfluids. We follow the approach used by Banica and Vega that is based on the so-called pseudo-conformal transformation, which reduces the problem to the construction of modified wave operators for solutions of the equation $$\begin{aligned} iv_t+ v_{xx} +\frac{v}{2t}(|v|^2-A)=0. \end{aligned}$$ As a by-product of our results we prove that Eq. (0.1) is well-posed in appropriate function spaces when the initial datum is given by $u(0,x)= z_0 \mathrm p.v \frac{1}{x}$ for some values of $z_0\in \mathbb{C }\setminus \{ 0\}$ , and $A$ is adequately chosen. This is in deep contrast with the case when the initial datum is the Dirac-delta distribution.  相似文献   

2.
This paper deals with the boundedness of the solutions of the following dynamic equations(r(t)x△(t))△+a(t)f(xσ(t))+b(t)g(xσ(t))=0and(r(t)x△(t))△+a(t)xσ(t)+b(t)f(x(t-τ(t)))=e(t)on a time scale T.By using the Bellman integral inequality,we establish some suffcient conditions for boundedness of solutions of the above equations.Our results not only unify the boundedness results for differential and difference equations but are also new for the q-difference equations.  相似文献   

3.
We consider the perturbed Thomas–Fermi equation $$\begin{array}{ll} x^{\prime \prime}\, =\, p(t)|x|^{\gamma-1}x\, +\, q(t)|x|^{\delta-1}x, \qquad \qquad \qquad (A) \end{array}$$ where δ and γ are positive constants with \({\delta < 1 < \gamma}\) and p(t) and q(t) are positive continuous functions on \({[a,\infty), a > 0}\) . Our aim here is to establish criteria for the existence of positive solutions of (A) decreasing to zero as \({t \to \infty}\) in the case where p(t) and q(t) are regularly varying functions (in the sense of Karamata). Generalization of the obtained results to equations of the form $$\begin{array}{ll} \left(r(t)x^{\prime}\right)^{\prime}\, =\, p(t)|x|^{\gamma-1}x \,+ \,q(t)|x|^{\delta-1}x, \qquad \qquad \qquad (B) \end{array}$$ is also given.  相似文献   

4.
In this paper, oscillatory and asymptotic properties of solutions of nonlinear fourth order neutral dynamic equations of the form $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = 0(H)$ and $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = f(t),(NH)$ are studied on a time scale $\mathbb{T}$ under the assumption that $\int\limits_{t_0 }^\infty {\tfrac{t} {{r(t)}}\Delta t = \infty } $ and for various ranges of p(t). In addition, sufficient conditions are obtained for the existence of bounded positive solutions of the equation (NH) by using Krasnosel’skii’s fixed point theorem.  相似文献   

5.
In this paper, we give a Landesman-Lazer type theorem for periodic solutions of the asymmetric 1-dimensional p-Laplacian equation -(|x'|^p-2x')'=λ|x|^p-2x++μ|x|^p-2x-+f(t,x)with periodic boundary value.  相似文献   

6.
In this paper we establish the local H?lder continuity of the spatial gradient of weak solutions to the parabolic p(x, t)-Laplacian system $$\begin{array}{lll}\partial_{t}u - {\rm div} \left( a(x, t)|Du|^{p(x, t)-2}Du \right) = 0.\end{array}$$ More precisely, we prove that $$\begin{array}{lll}Du \in C_{\rm loc}^{0;\alpha,\alpha/2} \quad {\rm for\; some} \; \alpha \in (0, 1],\end{array}$$ provided p(·) and a(·) are H?lder-continuous.  相似文献   

7.
Let Ω ? 0 be an open bounded domain in R N (N ≥ 3) and $2^* (s) = \tfrac{{2(N - s)}} {{N - 2}}$ , 0 < s < 2. We consider the following elliptic system of two equations in H 0 1 (Ω) × H 0 1 (Ω): $$- \Delta u - t\frac{u} {{\left| x \right|^2 }} = \frac{{2\alpha }} {{\alpha + \beta }}\frac{{\left| u \right|^{\alpha - 2} u\left| v \right|^\beta }} {{\left| x \right|^s }} + \lambda u, - \Delta v - t\frac{v} {{\left| x \right|^2 }} = \frac{{2\beta }} {{\alpha + \beta }}\frac{{\left| u \right|^\alpha \left| v \right|^{\beta - 2} v}} {{\left| x \right|^s }} + \mu v,$$ where λ, µ > 0 and α, β > 1 satisfy α + β = 2*(s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain-Pass theorem, we establish the existence of solutions.  相似文献   

8.
Let α and s be real numbers satisfying 0<s<α<n. We are concerned with the integral equation $$u(x)=\int_{R^n}\frac{u^p(y)}{|x-y|^{n-\alpha}|y|^s}dy, $$ where \(\frac{n-s}{n-\alpha}< p< \alpha^{*}(s)-1\) with \(\alpha^{*}(s)=\frac{2(n-s)}{n-\alpha}\) . We prove the nonexistence of positive solutions for the equation and establish the equivalence between the above integral equation and the following partial differential equation $$\begin{aligned} (-\Delta)^{\frac{\alpha}{2}}u(x)=|x|^{-s}u^p. \end{aligned}$$   相似文献   

9.
In this paper we prove that a given set K is approximately weakly invariant with respect to the fully nonlinear differential inclusion $${x^\prime (t) \in Ax (t) + F (x (t))}$$ , where A is an m-dissipative operator, and F is a given multi-function in a Banach space, if and only if the set ${F(\xi)}$ is A-quasi-tangent to the set K, for every ${{\xi \in K}}$ . As an application, we establish that the approximate solutions of the given differential inclusion approximate the solutions of the relaxed (convexified) nonlinear differential inclusion $${x^\prime (t) \in Ax (t) + \overline{co}F (x (t))}$$ , with no hypotheses of Lipschitz type for multi-function F.  相似文献   

10.
We study growth of higher Sobolev norms of solutions of the onedimensional periodic nonlinear Schr?dinger equation (NLS). By a combination of the normal form reduction and the upside-down I-method, we establish $${\left\| {u(t)} \right\|_{{H^s}}} \le {(1 + \left| t \right|)^{a(s - 1) + }}$$ with ?? = 1 for a general power nonlinearity. In the quintic case, we obtain the above estimate with ?? = 1/2 via the space-time estimate due to Bourgain [4, 5]. In the cubic case, we compute concretely the terms arising in the first few steps of the normal form reduction and prove the above estimate with ?? = 4/9. These results improve the previously known results (except for the quintic case). In the Appendix, we also show how Bourgain??s idea in [4] on the normal form reduction for the quintic nonlinearity can be applied to other powers.  相似文献   

11.
We present some new necessary and sufficient conditions for the oscillation of second order nonlinear dynamic equation $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)=0$$ on an arbitrary time scale $\mathbb{T}$ , where α and β are ratios of positive odd integers, a and q are positive rd-continuous functions on $\mathbb{T}$ . Comparison results with the inequality $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)\leqslant 0\quad (\geqslant 0)$$ are established and application to neutral equations of the form $$\bigl(a(t)\bigl(\bigl[x(t)+p(t)x[\tau (t)]\bigr]^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }+q(t)x^{\beta }\bigl[g(t)\bigr]=0$$ are investigated.  相似文献   

12.
We consider the scalar homogeneous equation $S(x) = \int_0^\infty {K(x - t)S(t)dt,{\text{ }}x \in \mathbb{R}^ + \equiv (0,\infty ),}$ with symmetric kernel $K:K( - x) = K(x),{\text{ }}x \in \mathbb{R}_1$ satisfying the conditions $0 \leqslant K \in L_1 (\mathbb{R}^ + ) \cap C^{\left( 2 \right)} (\mathbb{R}^ + )$ , $\int_0^\infty {K(t)dt > \frac{1}{2}} $ , $K' \leqslant 0{\text{ }}and 0 \leqslant K'' \downarrow {\text{ }}on \mathbb{R}^ + $ . We prove the existence of a real solution S of the equation given above with asymptotic behavior $S(x) = O(x){\text{ as }}x \to + \infty $ .  相似文献   

13.
We consider the critical focusing wave equation $(-\partial _t^2+\Delta )u+u^5=0$ in ${\mathbb{R }}^{1+3}$ and prove the existence of energy class solutions which are of the form $$\begin{aligned} u(t,x)=t^\frac{\mu }{2}W(t^\mu x)+\eta (t,x) \end{aligned}$$ in the forward lightcone $\{(t,x)\in {\mathbb{R }}\times {\mathbb{R }}^3: |x|\le t, t\gg 1\}$ where $W(x)=(1+\frac{1}{3} |x|^2)^{-\frac{1}{2}}$ is the ground state soliton, $\mu $ is an arbitrary prescribed real number (positive or negative) with $|\mu |\ll 1$ , and the error $\eta $ satisfies $$\begin{aligned} \Vert \partial _t \eta (t,\cdot )\Vert _{L^2(B_t)} +\Vert \nabla \eta (t,\cdot )\Vert _{L^2(B_t)}\ll 1,\quad B_t:=\{x\in {\mathbb{R }}^3: |x|<t\} \end{aligned}$$ for all $t\gg 1$ . Furthermore, the kinetic energy of $u$ outside the cone is small. Consequently, depending on the sign of $\mu $ , we obtain two new types of solutions which either concentrate as $t\rightarrow \infty $ (with a continuum of rates) or stay bounded but do not scatter. In particular, these solutions contradict a strong version of the soliton resolution conjecture.  相似文献   

14.
In this paper we consider systems with the separable Hilbert inner, input and output spacesX, $\mathfrak{N}^ - $ , $\mathfrak{N}^ + $ of the form $$\frac{{dx(t)}}{{dt}} = \hat Bx(t) + L\varphi ^ - (t),\varphi ^ + (t) = N(x(t),\varphi ^ - (t)),x(0) = a$$ with some natural restrictions on the coefficients which have been proposed by Yu.L. Shmuljan. For each system the concepts of simple, minimal, passive scattering, conservative scattering, optimal passive scattering ones are introduced. We realize any $[\mathfrak{N}^ - ,\mathfrak{N}^ + ]$ valued function θ(p) which is holomorphic with contractive values in the right half plane as the transfer function (t.f.) of a simple conservative scattering system and also as the t.f. of a minimal optimal passive scattering system. Both these realizations are defined by θ(p) uniquely up to unitary similarity. Reduction of the problem to the corresponding problems for systems with discrete time via Cayley transform is used.  相似文献   

15.
We consider a nonoscillatory half-linear second order differential equation (*) $$ (r(t)\Phi (x'))' + c(t)\Phi (x) = 0,\Phi (x) = \left| x \right|^{p - 2} x,p > 1, $$ and suppose that we know its solution h. Using this solution we construct a function d such that the equation (**) $$ (r(t)\Phi (x'))' + [c(t) + \lambda d(t)]\Phi (x) = 0 $$ is conditionally oscillatory. Then we study oscillations of the perturbed equation (**). The obtained (non)oscillation criteria extend existing results for perturbed half-linear Euler and Euler-Weber equations.  相似文献   

16.
We consider the semilinear electromagnetic Schrödinger equation ${(-i{\nabla} + \mathcal{A}(x))^{2}u + V (x)u = |u|^{{2}^{\ast}-2}u, u\, {\in}\, D_{\mathcal{A},0}^{1,2}{(\Omega,\mathbb{C})}}$ , where ${\Omega = (\mathbb{R}^{m}\;{\backslash}\;\{0\}) {\times} {\mathbb{R}^{N-m}}}$ with 2 ≤ m ≤  N, N ≥ 3, 2* : = 2N/(N – 2) is the critical Sobolev exponent, V is a Hardy term and ${\mathcal{A}}$ is a singular magnetic potential of a particular form which includes the Aharonov– Bohm potentials. Under some symmetry assumptions on ${\mathcal{A}}$ we obtain multiplicity of solutions satisfying certain symmetry properties.  相似文献   

17.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

18.
The generalized weighted mean operator ${\mathbf{M}^{g}_{w}}$ is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g ?1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.  相似文献   

19.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

20.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号