首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
格子Boltzmann方法中的曲边界处理   总被引:2,自引:2,他引:2  
杜睿  施保昌 《计算物理》2006,23(4):405-411
研究了格子Boltzmann方法中实现曲边界条件的3种格式,对它们的精度和稳定性进行了分析和比较.通过二维Poiseuille流和等边三角域上空腔流的模拟,讨论了这3种格式的数值精度和稳定性.  相似文献   

2.
利用基于Shan-Chen多相模型的格子Boltzmann方法对方腔内上板拖动的两相流动问题开展较为系统的数值模拟,详细研究雷诺数(Re),毛细数(Ca)和壁面润湿性对流动以及混合特性的影响.结果表明:Re数、Ca数越大,方腔内两相流体的混合界面长度越大,混合效果越好.另外,壁面憎水程度越高,混合界面长度增加越快,然而对于强亲水壁面,混合界面长度最终趋于一常数.  相似文献   

3.
格子Boltzmann方法(LBM)中边界条件的处理很复杂,在现有的边界条件处理方法中,动力学格式能够精确满足宏观边界条件,但由于要解一个不定方程,必须引入附加假设确保方程非奇异.作为动力学格式和反弹格式的一种扩展,提出一种处理三维任意速度运动边界的统一模型,其中人口速度和固体壁面速度是该模型的特殊情形.给出用于三维15速度的表达式.为了检验该模型,模拟对角顶盖驱动三维空腔流,并将结果与有限差分法计算的结果进行比较,说明所提出的统一模型是合理可行的.  相似文献   

4.
任意复杂流-固边界的格子Boltzmann处理方法   总被引:2,自引:0,他引:2       下载免费PDF全文
史冬岩  王志凯  张阿漫 《物理学报》2014,63(7):74703-074703
本文提出了一种适用于流固耦合领域中任意复杂边界条件的lattice Boltzmann处理方法.该方法基于half-way反弹模型,在流固耦合处构建了一层虚拟边界,并结合有限差分的方法,获取虚拟边界上的变量值.改进后的方法确保了粒子反弹位置与宏观速度采集点的位置相同,计入了实际物理边界与网格线不重合时,偏移量对计算结果的准确影响,而且其适用范围被扩展到了任意静止或运动、平直或弯曲的复杂边界.文中研究了该方法在Poiseuille流、圆柱绕流和Couette流等经典条件下的边界处理能力,结果表明该方法与理论值符合良好,且当实际物理边界与网格线不重合时,与已发表文献中的结果相比,具有更高的精度.  相似文献   

5.
格子Boltzmann亚格子模型的研究   总被引:2,自引:1,他引:1  
为了将格子Boltzmann法应用于大雷诺数流动的模拟,本文将Smagorinsky亚格子模型和LBGK模型相结合,并对该亚格子LBM模型进行了研究。利用该亚格子LBM模型,对二维顶盖驱动流进行了模拟,得到了若干大雷诺数下流线图和方腔中心线上无量纲速度分布。计算结果与基准解进行比较,两者相互吻合。  相似文献   

6.
格子气和格子Boltzmann方法的迅速发展提供了一类求解流体力学问题的新方法。格子Boltzmann方法在保留了格子气模型优点的同时,克服了它的不足之处。本文讨论了一种三维十五点格子Boltzmann模型,通过选择适当的平衡分布及参数,并用Chapman-Enskog展开和多尺度技术导出了Navier-Stokes方程.在微机上模拟了工程中比较常见的管排绕流问题,并与实验观察到的结果进行了比较,结果表明该模型能较好的模拟复杂流动现象,并具有较好的工程应用背景。  相似文献   

7.
采用13速六方格子Boltzmann方程研究Couette流和空腔粘性流,模拟了在Pr=0.91,Re=100,5000,及Pr=0.91,1,1.25而Re=3000情总下Couette流流场的速度、温度分布,研究了热输运过程;同时用该模型拟了高雷诺数的空腔粘性流流场演化稳定后,形成的涡旋的形状及腔内温度分布情况。  相似文献   

8.
详细对比分析模拟流固两相流的格子Boltzmann方法中三类不同的流固耦合格式(半反弹方法、亚网格方法和曲边界方法)的特点,发现半反弹方法所获得的速度、角速度存在较大的扰动,而亚网格颗粒方法则能够获得平滑的发展曲线.  相似文献   

9.
格子-BOLTZMANN方法非均分网格的实施   总被引:2,自引:2,他引:0  
本文提出了格子-Boltzmann方法的一种新的插值算法,使得网格划分与微观粒子运动方向相分离;用该方法模拟了后台阶通道内的突扩流动和二维极坐标下的空腔流.所得结果与传统方法吻合良好,证明了该方法的可行性.  相似文献   

10.
二维空腔黏性流的格子Boltzmann方法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
用13速六方格子BhatnagarGrossKrook(缩写为BGK)模型模拟二维空腔黏性流.给出了上边界流体作匀速运动时,具有不同雷诺数的空腔黏性流的流场速度分布情况,模拟了在雷诺数Re=3000时,流场中的涡旋形成过程及流场稳定后,腔内密度、压力和温度的分布情况 关键词:  相似文献   

11.
We propose a lattice Boltzmann scheme for two-dimensional complex boundaries moving in fluid flow. The hydrodynamic forces exerting on the moving boundaries are calculated based on a stress-integration method proposed before, but the extrapolation procedure is avoided, and the stability of this model is improved. The accuracy and robustness are demonstrated by numerical simulations of a circular particle settling in a twodimensional vertical channel. The numerical convergence is studied by varying the time-step and the dimensionless particle sizes.  相似文献   

12.
分析格子Boltzmann方法中二阶精度的曲线边界处理方法.应用格子Boltzmann方法及其边界处理方法模拟1/4圆腔内的定常层流运动,引入流线图和等涡线图分析流场随Re数的变化.并且发现当Re数在10~100区间内变化时,随着Re数的增大,顺时针旋转流场的涡心位置偏离x轴的角度逐渐减小,而逆时针旋转流场的涡心位置偏离x轴的角度却越来越大.  相似文献   

13.
This paper presents a lattice Boltzmann (LB) method based study aimed at numerical simulation of aeroacoustic phenomenon in flows around a symmetric obstacle. To simulate the compressible flow accurately, a potential energy double-distribution-function (DDF) lattice Boltzmann method is used over the entire computational domain from the near to far fields. The buffer zone and absorbing boundary condition is employed to eliminate the non-physical reflecting. Through the direct numerical simulation, the flow around a circular cylinder at $Re$=150, $M$=0.2 and the flow around a NACA0012 airfoil at $Re$=10000, $M$=0.8, $α$=$0^◦$ are investigated. The generation and propagation of the sound produced by the vortex shedding are reappeared clearly. The obtained results increase our understanding of the characteristic features of the aeroacoustic sound.  相似文献   

14.
应用多GPU技术,将格子Boltzmann方法与大涡模拟相结合(LBM-LES),使用1.12×108网格,对雷诺数Re=4 000,倾斜角α=30°,吹风比M=0.5工况下的平板单孔射流进行了大规模高性能数值模拟研究.合理的定性与定量结果验证了LBM-LES模拟平板射流的有效性与可行性.使用上亿的计算网格捕捉了精细的湍流拟序结构,有利于主流与射流之间的掺混机理研究.此外,使用6个K20M GPU并行计算,模拟了71 680 LBM时间步长,仅耗时15 402秒,计算性能达到521.24MLUPS,即每秒更新5.212 4×108个网格点的数据.  相似文献   

15.
The goal of this article is to study numerically the mixed convection in a differentially heated lid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with multiple relaxation time Lattice Boltzmann(MRT-LBM) model, while the temperature field is obtained by resolution of the energy balance equation using the finite difference method(FDM). First, the model is checked and validated using data from the literature. Validation of the present results with those available in the literature shows a good agreement.A good efficiency in time simulation is confirmed. Thereafter, the model has been applied to mixed convection in a driven cavity with non-uniform heating wall at the fixed Grashof number Gr = 106. It is found that, the heat transfer is weakened as the Richardson number is augmented. For Gr = 106, we note the appearance of secondary vortices at different positions of the cavity corners.  相似文献   

16.
In lattice Boltzmann methods, disturbances develop at the initial stages of the simulation, the decay characteristics depend mainly on boundary treatment methods; open boundary conditions such as equilibrium and bounce-back schemes potentially generate uncontrollable disturbances. Excessive disturbances originate from non-physical reflecting waves at boundaries. Characteristic boundary conditions utilizing the signs of waves at boundaries which suppress these reflecting waves, as well as their implementation in the lattice Boltzmann method, are introduced herein. The performance of our novel boundary treatment method to effectively suppress excessive disturbances is verified by three different numerical experiments.  相似文献   

17.
彭浩  单鸣雷  朱昌平  姚澄 《计算物理》2018,35(5):554-562
格子Boltzmann方法伪势模型算法中的格点间计算未完全局部化,因此在并行计算时需要更多次的全局内存读写、使用更多数量的寄存器和线程同步操作,从而导致GPU并行计算效率下降.本文针对伪势模型并行计算的局限性,基于三维十五速格子结构的多松弛时间伪势模型,以气液相分离为算例,通过合并访问的方式提高全局内存的读写效率;并提出一种"定向转移"算法,提高格子边界格点获取邻居格点数据的效率;最后探索不同资源分配中各种因素对计算效率的影响,总结最优资源分配的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号