首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the development and characterization of an integrated microfluidic biochemical detection system for fast and low-volume immunoassays using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Microfluidic components have been developed and integrated to construct a microfluidic biochemical detection system. Magnetic bead-based immunoassay, as a typical example of biochemical detection and analysis, has been successfully performed on the integrated microfluidic biochemical analysis system that includes a surface-mounted biofilter and electrochemical sensor on a glass microfluidic motherboard. Total time required for an immunoassay was less than 20 min including sample incubation time, and sample volume wasted was less than 50 microl during five repeated assays. Fast and low-volume biochemical analysis has been successfully achieved with the developed biofilter and immunosensor, which is integrated to the microfluidic system. Such a magnetic bead-based biochemical detection system, described in this paper, can be applied to protein analysis systems.  相似文献   

2.
Wang CH  Lien KY  Wu JJ  Lee GB 《Lab on a chip》2011,11(8):1521-1531
This study reports a new diagnostic assay for the rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) by combing nucleic acid extraction and isothermal amplification of target nucleic acids in a magnetic bead-based microfluidic system. By using specific probe-conjugated magnetic beads, the target deoxyribonucleic acid (DNA) of the MRSA can be specifically recognized and hybridized onto the surface of the magnetic beads which are then mixed with clinical sample lysates. This is followed by purifying and concentrating the target DNA from the clinical sample lysates by applying a magnetic field. Nucleic acid amplification of the target genes can then be performed by the use of a loop-mediated isothermal amplification (LAMP) process via the incorporation of a built-in micro temperature control module, followed by analyzing the optical density (OD) of the LAMP amplicons using a spectrophotometer. Significantly, experimental results show that the limit of detection (LOD) for MRSA in the clinical samples is approximately 10 fg μL(-1) by performing this diagnostic assay in the magnetic bead-based microfluidic system. In addition, the entire diagnostic protocol, from bio-sample pre-treatment to optical detection, can be automatically completed within 60 min. Consequently, this miniature diagnostic assay may become a powerful tool for the rapid purification and detection of MRSA and a potential point-of-care platform for detection of other types of infections.  相似文献   

3.
Hervás M  López MA  Escarpa A 《The Analyst》2011,136(10):2131-2138
Microfluidic technology has now become a novel sensing platform where different analytical steps, biological recognition materials and suitable transducers can be cleverly integrated yielding a new sensor generation. A novel "lab-on-a-chip" strategy integrating an electrokinetic magnetic bead-based electrochemical immunoassay on a microfluidic chip for reliable control of permitted levels of zearalenone in infant foods is proposed. The strategy implies the creative use of the simple channel layout of the double-T microchip to perform sequentially the immunointeraction and enzymatic reaction by applying a program of electric fields suitably connected to the reservoirs for driving the fluidics at different chambers in order to perform the different reactions. Both zones are used with the aid of a magnetic field to avoid in a very simple and elegant way the non-specific adsorption. Immunological reaction is performed under a competitive enzyme-linked immunosorbent assay (ELISA) where the mycotoxin ZEA and an enzyme-labelled derivative compete for the binding sites of the specific monoclonal antibody immobilised onto protein G modified magnetic beads. Horseradish peroxidase (HRP), in the presence of hydrogen peroxide, catalyses the oxidation of hydroquinone (HQ) to benzoquinone (BQN), whose back electrochemical reduction was detected at +0.1 V. Controlled-electrokinetic fluidic handling optimized conditions are addressed for all analytical steps cited above, and allows performing the complete immunoassay for the target ZEA analyte in less than 15 minutes with unique analytical merits: competitive immunoassay currents showed a very well-defined concentration dependence with a good precision as well as a suitable limit of detection of 0.4 μg L(-1), well below the legislative requirements, and an extremely low systematic error of 2% from the analysis of a maize certified reference material revealing additionally an excellent accuracy. Also, the reliability of the approach is demonstrated by the analysis of selected infant foods yielding the strictest ZEA permitted levels and excellent recoveries of 103 and 101% for solid and liquid samples, respectively.  相似文献   

4.
The combination of electrophoretic and magnetic manipulations with electrochemical detection for a versatile microfluidic and bead-based biosensing application is demonstrated. Amperometric detection is performed in an off-channel setup by means of a voltammetric cell built at the microchannel outlet and using a gold working electrode. Superparamagnetic particles are introduced and handled inside the channel by means of an external permanent magnet in combination with the electrogenerated flow which allows reproducible loading. The specific detection of phenol as electroactive alkaline phosphatase product is used in this study as proof of concept for a sensitive protein quantification. Characterizations and optimization of different parameters have been carried out in order to achieve the best detection signal. The applicability of the device has been finally demonstrated by the detection of rabbit IgG as model protein after an immunoassay performed on magnetic particles as immobilization platform. A comparison between the electrochemical detection using the developed device and the optical standard detection revealed similar performances with, however, extremely lower amount of reagent used and shorter analysis time. The developed electrophoretic- and magnetic-based chip may open the way to several other biosensing applications with interest not only for other proteins but also for DNA analysis, cell counting, and environmental control.  相似文献   

5.
In this paper, we demonstrate the possibility to use magnetic nanoparticles as immunosupports for allergy diagnosis. Most immunoassays used for immunosupports and clinical diagnosis are based on a heterogeneous solid-phase system and suffer from mass-transfer limitation. The nanoparticles’ colloidal behavior and magnetic properties bring the advantages of homogeneous immunoassay, i.e., species diffusion, and of heterogeneous immunoassay, i.e., easy separation of the immunocomplex and free forms, as well as analyte preconcentration. We thus developed a colloidal, non-competitive, indirect immunoassay using magnetic core–shell nanoparticles (MCSNP) as immunosupports. The feasibility of such an immunoassay was first demonstrated with a model antibody and described by comparing the immunocapture kinetics using macro (standard microtiter plate), micro (microparticles) and nanosupports (MCSNP). The influence of the nanosupport properties (surface chemistry, antigen density) and of the medium (ionic strength, counter ion nature) on the immunocapture efficiency and specificity was then investigated. The performances of this original MCSNP-based immunoassay were compared with a gold standard enzyme-linked immunosorbent assay (ELISA) using a microtiter plate. The capture rate of target IgG was accelerated 200-fold and a tenfold lower limit of detection was achieved. Finally, the MCSNP-based immunoassay was successfully applied to the detection of specific IgE from milk-allergic patient’s sera with a lower LOD and a good agreement (CV < 6%) with the microtiter plate, confirming the great potential of this analytical platform in the field of immunodiagnosis.  相似文献   

6.
A simple, rapid, and highly sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) and disposable screen-printed electrodes (SPE) has been developed to detect polychlorinated biphenyls (PCBs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PCB-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PCB (HRP-PCB). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreactions among PCB-antibody-coated MBs, PCB analyte, and HRP-PCB. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing o-aminophenol and hydrogen peroxide for electrochemical detection. The different parameters, including the amount of HRP-PCB conjugates, immunoreaction time, and the concentration of substrate that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 10 pg mL−1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical immunoassay was successfully evaluated with untreated river water spiked with PCBs, and the results were validated by commercial PCB enzyme-linked immunosorbent assay kit, indicating that this convenient and sensitive technique offers great promise for decentralized environmental application and trace PCBs monitoring.  相似文献   

7.
The construction of double matrix membranes (DMM) for disposable NH 4 + , Na+ and pH sensors is described. The usual polymer matrix membrane was incorporated in an inert micro fibre matrix (MFM). Capillary forces distribute the cocktail homogeneously in the MFM; this also determines the thickness. Sensors using the new DMM have shown selectivity, detection limits and slope comparable with polymer matrix membranes. The advantages of DMMs are their mechanical stability, the feasibility of low cost mass production with identical parameters and improved handling.  相似文献   

8.
Magnetic beads have served as a conventional bioassay platform in biotechnology. In this study, a fully automated immunoassay was performed using novel nano- and microbead-composites constructed by assembling nano-magnetic beads onto polystyrene microbeads, designated ‘Beads on Beads’. Nano-sized bacterial magnetic particles (BacMPs) displaying the immunoglobulin G (IgG)-binding domain of protein A (ZZ domain) were used for the construction of ‘Beads on Beads’ via the interaction of biotin-streptavidin. The efficient assembly of ‘Beads on Beads’ was performed by gradual addition of biotin-labeled BacMPs onto streptavidin-coated polystyrene microbeads. Approximately 2000 BacMPs were uniformly assembled on a single microbead without aggregation. The constructed ‘Beads on Beads’ were magnetized and separated from the suspension by using an automated magnetic separation system with a higher efficiency than BacMPs alone. Furthermore, fully automated detection of prostate-specific antigens was performed with the detection limit of 1.48 ng mL−1. From this preliminary assay, it can be seen that ‘Beads on Beads’ could be a powerful tool in the development of high-throughput, fully automated multiplexed bioassays.  相似文献   

9.
Borowsky J  Collins GE 《The Analyst》2007,132(10):958-962
The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.  相似文献   

10.
An indicator-based and indicator-free magnetic assays connected with a disposable pencil graphite electrode (PGE) were successfully developed, and also compared for the electrochemical detection of DNA hybridization. The oxidation signals of echinomycin (ECHI) and electroactive DNA bases, guanine and adenine, respectively were monitored in the presence of DNA hybridization by using differential pulse voltammetry (DPV) technique. The biotinylated probe was immobilized onto the magnetic beads (magnetic particles, microspheres) and hybridization with its complementary target at the surface of particles within the medium was exhibited successfully using electrochemical sensor system. For the selectivity studies, the results represent that both indicator-based and indicator-free magnetic assays provide a better discrimination for DNA hybridization compared to duplex with one-base or more mismatches. The detection limits (S/N = 3) of the magnetic assays based on indicator or indicator-free were found in nM concentration level of target using disposable sensor technology with good reproducibility. The characterization and advantages of both proposed magnetic assays connected with a disposable electrochemical sensor are also discussed and compared with those methods previously reported in the literature.  相似文献   

11.
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.  相似文献   

12.
A new lab-on-a-chip compatible binding assay platform is introduced. The platform combines dry-chemistry bioaffinity reagents and the recently introduced ArcDia TPX binding assay technique. The technique employs polymer microspheres as a solid phase reaction carrier, fluorescently labeled antibody conjugates, and detection of fluorescence emission from the surface of individual microspheres by two-photon excitation fluorescence. Signal response of the technique is independent of the reaction volume, thus the technique is particularly well suited for detection of bioaffinity reactions from miniature volumes. Performance of the new assay platform is studied by means of an immunometric assay of human alpha-fetoprotein (hAFP) in 384-plate format, and the results are compared to those of a corresponding wet-chemistry assay method. The results show that the ArcDia TPX detection technique can be combined with dry-chemistry reagents without compromises in assay performance. The microchip field has so far been characterized with a lack of microchip-compatible detection platforms which would allow cost-effective microchip design and sensitive bioaffinity detection. The presented detection technique is expected to provide a solution for this shortage.  相似文献   

13.
A novel magnetic molecularly imprinted polymer adsorbing material was successfully synthesized to detect ribavirin in animal feedstuff. Molecularly imprinted polymer was prepared through surface polymerization by using ribavirin as template molecule, methyl methacrylate, and γ‐methacryloxypropyl trimethoxy silane functionalized magnetic mesoporous silica as bifunctional monomers, and ethylene diglycidyl ether as crosslinking agent. The prepared magnetic molecularly imprinted polymer was characterized by scanning electron microscopy and infrared spectroscopy. Static and dynamic adsorption experiments and selective adsorption analysis were performed to evaluate the adsorption and selectivity of magnetic molecularly imprinted polymer. Different experiments were conducted to optimize the magnetic solid‐phase extraction conditions. Under optimal experimental conditions, a magnetic molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography method was successfully developed for ribavirin detection. The established method achieved a satisfactory linear range of 0.20–50 mg/L (R> 0.99) and a low detection limit (0.081 mg/kg). An average recovery of 92–105% with relative standard deviation of <6.5% was obtained upon the application of the developed method to detect ribavirin in real feedstuff samples. Thus, established method can be used for the rapid and simple separation and detection of added ribavirin in feedstuff.  相似文献   

14.
Cheng D  Guo Y  Hsing IM 《The Analyst》2012,137(4):999-1004
In this study, we report a new immunoassay platform based on yeast surface display technology for detection of autoantibodies involved in autoimmune diseases, e.g., systemic lupus erythematosus (SLE) and Sj?gren's syndrome (SS). The autoantigens of Ro52/SSA epitope and SmD were chosen to be displayed on the yeast surface with their respective antibodies as the analytes. By using magnetic beads modified with protein G, yeast cells bound with specific target antibody can be captured. The amount of analytes could be determined by counting the number of fluorescent yeast cells captured in a magnetic field. The platform showed promising results in the detection of SLE autoantibodies with high sensitivity and multiplex detection capability over the traditional approaches.  相似文献   

15.
Wang YC  Han J 《Lab on a chip》2008,8(3):392-394
Almost all immuno-biosensors are inherently limited by the quality of antibodies available for the target molecule, and obtaining a highly sensitive antibody for a given target molecule is a challenge. We describe a highly efficient and flexible way to enhance immunoassay detection sensitivity and binding kinetics using a nanofluidic based electrokinetic preconcentrator. The device is a microfluidic integration of charge-based biomolecule concentrator and a bead-based immunoassay. Because the preconcentrator can increase the local biomolecule concentration by many orders of magnitude, it gives the immuno-sensor better sensitivity and faster binding kinetics. With a 30 min preconcentration, we were able to enhance the immunoassay sensitivity (with molecular background) by more than 500 fold from higher 50 pM to the sub 100 fM range. Moreover, by adjusting the preconcentration time, we can switch the detection range of the given bead-based assay (from 10-10 000 ng ml(-1) to 0.01-10 000 ng ml(-1)) to have a broader dynamic range of detection. As the system can enhance both detection sensitivity and dynamic range, it can be used to address the most critical detection issues in the detection of common disease biomarkers.  相似文献   

16.
A novel rolling circle amplification (RCA) immunoassay based on DNA enriching magnetic nanoparticles and assembled fluorescent DNA nanotags, magnetic nanoparticles-RCA immunoassay, is developed as a versatile fluorescence assay platform for highly sensitive proteins detection.  相似文献   

17.
This work demonstrates the detection of E. coli using a 2-dimensional photosensor array biochip which is efficiently equipped with a microfluidics sample/reagent delivery system for on-chip monitoring of bioassays. The biochip features a 4 x 4 array of independently operating photodiodes that are integrated along with amplifiers, discriminators and logic circuitry on a single platform. The microfluidics system includes a single 0.4 mL reaction chamber which houses a sampling platform that selectively captures detection probes from a sample through the use of immobilized bioreceptors. The independently operating photodiodes allow simultaneous monitoring of multiple samples. In this study the sampling platform is a cellulosic membrane that is exposed to E. coli organisms and subsequently analyzed using a sandwich immunoassay involving a Cy5-labeled antibody probe. The combined effectiveness of the integrated circuit (IC) biochip and the immunoassay is evaluated for assays performed both by conventional laboratory means followed by detection with the IC biochip, and through the use of the microfluidics system for on-chip detection. Highlights of the studies show that the biochip has a linear dynamic range of three orders of magnitude observed for conventional assays, and can detect 20 E. coli organisms. Selective detection of E. coli in a complex medium, milk diluent, is also reported for both off-chip and on-chip assays.  相似文献   

18.
高分子材料3D打印加工可制备传统加工不能制备的形状复杂的高分子制件,是近年来发展很快的先进制造技术。但适用于3D打印加工的高分子材料种类少,结构功能单一,难以制备高分子功能器件。本文介绍了我们在聚合物基微纳米功能复合材料3D打印加工方面的研究工作:通过有机/无机杂化、固相剪切碾磨、超声辐照、分子复合等技术制备适合于选择性激光烧结(SLS)和熔融沉积成型(FDM)的聚合物基微纳米功能复合材料;实现了聚合物基微纳米功能复合粉体的SLS加工和功能复合丝条的FDM加工;研究了3D打印低维构建、层层叠加、自由界面成型、复杂固-液-固转变过程;建立了功能复合粉体球形化技术,发明了直接熔融挤出新型FDM打印机;制备了常规加工方法不能制备的数种形状复杂的功能器件,如尼龙11/钛酸钡压电器件、柔性聚氨酯/碳纳米管传感器、个性化人颌骨模型等,突破了传统加工难以制备复杂形状制品和目前3D打印难以制备功能制品的局限。  相似文献   

19.
《中国化学》2018,36(2):134-138
Self‐assembly post‐modification has proven to be an efficient strategy to build higher‐order supramolecular architectures and functional materials. In this study, we successfully realized the construction of a new family of neutral supramolecular polymeric films containing well‐defined metallacycles as the main scaffolds through combination of coordination‐driven self‐assembly with post‐electropolymerization. The obtained neutral polymeric materials were fully characterized by the cyclic voltammogram (CV), SEM, and TEM. The thickness of the films was able to be well regulated by the number of scanning cycles. Moreover, we found that the shape of the metallacycles and the number of triphenylamine moieties played important roles in the formation of the final polymer films. We believe that the introduction of the neutral metallacycles into the final polymer structures not only enriches the library of supramolecular polymeric films but also provides a new platform to study neutral molecule detection, separation, and capture.  相似文献   

20.
《化学:亚洲杂志》2017,12(22):2894-2898
A new concept of single microbead (MB)‐anchored fluorescent immunoassay (SMFIA) is proposed with greatly improved sensitivity. In the SMFIA, a single MB is manipulated as the reaction carrier so that the target‐tethered fluorescent immunocomplexes will be highly concentrated on one MB. By monitoring the enriched fluorescence signal on the single MB through imaging, highly sensitive target quantification can be realized just by employing the most common sandwich immunoreactions without requirement of further signal amplification routes. The high sensitivity of the SMFIA can fully meet the demand of current medical diagnosis. Furthermore, we have further advanced a fluorescence‐encoding mechanism for the proposed SMFIA which allows the simultaneous detection of multiple antigens in a single reaction. Sharing the distinct advantages of simple operation, high sensitivity and multiplexed detection capability, the SMFIA provides a general platform for the detection of various biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号