首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

2.
The motion of a spherical cavity in a fluid is investigated. The radius of the sphere varies under the action of a constant pressure at infinity. The problems of the collapse of a cavity moving in an unbounded fluid and of the collapse of a cavity near a plane are solved in the exact formulation. The occurrence of an initial translational velocity or the presence of a solid surface, by contrast with the collapse of a sphere at rest in an unbounded fluid [1], yields a limiting radius at which the process of collapse ceases. A sphere initially at rest near a plane always comes into contact with the plane as a result of collapse. The radius and velocities at which the sphere arrives the plane are calculated for various initial distances from the latter. The possible mechanism of the action of a cavitation bubble on a solid surface is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 94–103, September–October, 1971.  相似文献   

3.
The motion of a vortex near a boundary of arbitrary shape is considered within the framework of a two-dimensional problem. Integrable differential equations of motion are obtained. Two forms of the algebraic equation of the vortex trajectories are derived. Examples of vortex motion near a straight-line boundary, in a channel, in an angular domain, in the neighborhood of a flat edge, in a round basin, and near a parabolic boundary.  相似文献   

4.
In this paper a simple method is presented to analyze the time variation of the principal-strain directions. The experimental arrangement to be used consists of a dark-field linear polariscope, a beam of monochromatic parallel light with a small diameter penetrating the measuring point with normal incidence. The variation of the light intensity behind the analyzer was measured by a photocell and a CRO. According to the method introduced here, two variations of light intensity were measured by choosing two orientations of the crossed system of polarizer and analyzer. The difference between the orientations is 45 deg. This method was applied to the analysis of the resulting principal directions in a region in which a superposition of a compression and a shear wave occurred. These waves were produced in a photoelastic foil, which was cemented on a brass rod impacted longitudinally. The compressional main pulse generated in the rod has a duration of about 25 μs. This experimental arrangement will be used later to investigate the behavior of the photoelastic material under short-time loading.  相似文献   

5.
This paper presents a detailed numerical solution to a simplified version of two-dimensional stratified flow over a backward-facing step with a Froude number of 16/9, a Reynolds number of 800 and a Prandtl number of 1—one of the Open Boundary Condition Symposium test problems. The steady state solution was derived by integrating the time-dependent Boussinesq equations forward in time using a semi-implicit finite-element-based model on a 38400-element mesh. In addition to presenting the results derived on this grid, the paper also presents the results of a Richardson extrapolation calculation for a set of ‘key’ parameters. It is hoped that this solution can be used as a baseline to compare the performance of the various techniques discussed at the Open Boundary Condition Symposium.  相似文献   

6.
We derive a wave equation for small-amplitude, undamped, extensional oscillation of a spring-mass system consisting of a mass suspended on a spring governed by a quadratic force-extension relationship. We justify this quadratic model using a Taylor series expansion of the general elasticity equations for a helical spring. Transformation of the equation of motion of the spring leads to a separable wave equation with the spacial component being a transformation of Bessel's equation. The model is successful in predicting static extension and period of oscillation of a helical wire spring for which the wave equation based on Hooke's law is inadequate.  相似文献   

7.
The problem of plane convective flow through a porous medium in a rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. The onset of unsteady regimes is investigated numerically. It is shown that their onset scenarios depend on the vessel dimensions and the seepage Rayleigh number and may be as follows: the generation of stable and unstable periodic regimes as a result of a one-sided bifurcation, the generation of a stable periodic regime as a result of an Andronov-Hopf cosymmetric bifurcation, the formation of a chaotic attractor, the branching-out of a stable quasi-periodic regime from a point of a single-parameter family of steady-state regimes, and the generation of unstable periodic regimes as a result of disintegration of homoclinic trajectories. The specifics of most of the bifurcations mentioned above are attributable to the cosymmetry of the problem considered.  相似文献   

8.
The supersonic unsteady flow of a gas past a lattice of thin, slightly curved profiles has been investigated in several studies. The paper [1] is devoted to an evaluation of the effect of wind tunnel walls on the unsteady aerodynamic characteristics of a profile, and [2] investigates the effects of the boundaries of a free jet. These cases are equivalent respectively to the anti-phase and in-phase oscillations of the profiles of an unstaggered grid. In [3] consideration is given to a more general case of gas flow past a profile in a wind tunnel with perforated walls. Flow past a lattice of profiles with stagger is studied in [4], where the magnitude of the stagger angle is limited by the condition that the lattice leading edge is located in the undisturbed stream.In the present paper we present a method of calculation of the unsteady supersonic flow of a gas past a lattice of profiles with arbitrary stagger. As an example the results are presented of the calculation of the aerodynamic forces and moments acting on an oscillating profile in a wind tunnel with solid walls and in a free jet.  相似文献   

9.
We investigate the Andronov-Hopf bifurcation of the birth of a periodic solution from a space-homogeneous stationary solution of the Neumann problem on a disk for a parabolic equation with a transformation of space variables in the case where this transformation is the composition of a rotation by a constant angle and a radial contraction. Under general assumptions, we prove a theorem on the existence of a rotating structure, deduce conditions for its orbital stability, and construct its asymptotic form. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 155–169, April–June, 2006.  相似文献   

10.
For the purpose of modeling the motion of a solid with a cavity filled with a viscous fluid, M. A. Lavrent'ev [1] has proposed a model in the form of a solid with a spherical cavity in which another solid, spherical in shape, is enclosed. The sphere is separated from the cavity walls by a small, clearance in which viscous forces act (a lubricating film). This simple model with a finite number of degrees of freedom possesses certain mechanical properties of a solid with a cavity containing a viscous fluid. Study of this model is therefore of interest.The present paper examines certain properties of the model, which will be termed a solid with a damper. It is shown that for a highviscosity lubricant the motion of a solid with a damper can be described by the same equations which pertain to the motion of a solid with a spherical cavity filled with a high-viscosity fluid. Expressions relating the parameters of the systems are obtained. If these relations are fulfilled, the systems become mechanically equivalent.The steady motions of a free solid with a damper and their stability conditions are determined.These motions and stability conditions hold for a body with a cavity filled with a viscous fluid [2].  相似文献   

11.
We propose a new derivation of the evolution equation of a sharp, coherent interface in a two-phase body having elongated shape, a body which we regard as a one-dimensional micropolar continuum. To this aim, we introduce a system of forces acting at the interface, and we apply the method of virtual powers to derive a balance law involving these forces. By exploiting the dissipation inequality, we manage to write this balance law in terms of a scalar field whose form is reminiscent of a well-known expression for the configurational stress in three dimensional micropolar continua.  相似文献   

12.
We develop the periodic componentmethod [1] and represent the solution of a stochastic boundary value elasticity problem for a random quasiperiodic structure with a given disordering degree of inclusions in the matrix via the deviations from the corresponding solution for a random structure with a smaller disordering degree. An example in which the tensor of elastic properties of a composite is calculated is used to illustrate the asymptotic and differential approaches of the successive disordering method. The asymptotic approach permits representing the quasiperiodic structure with a given chaos coefficient and the desired tensor of effective elastic properties as a result of small successive disordering of an originally ideally periodic structure of a composite with known tensor of elastic properties. In the differential approach, a differential equation is obtained for the tensor of effective elastic properties as a function of the chaos coefficient. Its solution coincides with the solution provided by the asymptotic approach. The solution is generalized to the case of piezoactive composites, and a numerical analysis of the effective properties is performed for a PVF (polyvinylidene fluoride) piezoelectric with various quasiperiodic structures on the basis of the cubic structure with spherical inclusions of a high-module elastic material.  相似文献   

13.
An experimental and numerical analysis of the interaction between a plane horizontal water flow in a rectangular channel (free water current) and a plane thin water jet (water jet curtain) is presented; the jet flows out vertically from either a slot nozzle in the bottom of the channel or the crest of a rigid spillway at a velocity appreciably (several times) greater than the water velocity in the channel. Numerical calculations were carried out using the STAR-CD software package preliminarily tested against the experimental data obtained. The dependence of the water level in the channel at a certain distance ahead of the jet barrier on the main jet parameters and the water flow rate in the horizontal channel is studied. It is found that in the region of the interface between the flows both steady and unsteady (self-oscillatory) flow patterns can be realized. Steady stream/jet interaction patterns of the “ejection” and “ejection-spillway” types are distinguished and a criterion separating these regimes is obtained. The notion of a rigid spillway equivalent to a jet curtain is introduced and an approximate dependence of its height on the relevant parameters of the problem is derived. The possibility of effectively controlling the water level ahead of a rigid spillway with a sharp edge by means of a plane water jet flowing from its crest is investigated. The boundary of transition to self-oscillation interaction patterns in the region of the flow interface is determined. The structure of these flows and a possible mechanism of their generation are described. Within the framework of the inviscid incompressible fluid model in the approximate formulation for a “thin” jet, an analytical dependence of the greatest possible depth of a reservoir filled with a heavy fluid at rest and screened by a vertical jet barrier on the jet parameters is obtained.  相似文献   

14.
A solution is given to the problem of the penetration of a cumulative jet with an arbitrary distribution of the velocity along it, taking account of the strength properties of the barrier. Using the example of a jet with a linear distribution of the velocity, the article demonstrates the possibility of obtaining a large puncturing capacity due to a change in the gradient along the jet as a function of the physicomechanical properties of the barrier and the jet. In addition, a distribution of the velocity along the jet is obtained which assures a maximal penetration in a barrier, arranged at a distance where a limiting elongation is not attained either partially or completely over the whole jet.  相似文献   

15.
16.
For the equations of elastodynamics with polyconvex stored energy, and some related simpler systems, we define a notion of a dissipative measure-valued solution and show that such a solution agrees with a classical solution with the same initial data, when such a classical solution exists. As an application of the method we give a short proof of strong convergence in the continuum limit of a lattice approximation of one dimensional elastodynamics in the presence of a classical solution. Also, for a system of conservation laws endowed with a positive and convex entropy, we show that dissipative measure-valued solutions attain their initial data in a strong sense after time averaging.  相似文献   

17.
Numerical Simulation of Coherent Structures over Plant Canopy   总被引:2,自引:0,他引:2  
This paper reports large eddy simulations of the interaction between an atmospheric boundary layer and a canopy (representing a forest cover). The problem is studied for a homogeneous configuration representing the situation encountered above a continuous forest cover, as well as for a heterogeneous configuration representing the situation similar to an edge or a clearing in a forest. The numerical results reproduces correctly all the main characteristics of this flow as reported in the literature: the formation of a first generation of coherent structures aligned transversally with the wind flow direction, the reorganization and the deformation of these vortex tubes into horse-shoe structures. The results obtained when introducing a discontinuity in the canopy (reproducing a clearing or a fuel break in a forest), are compared with the experimental data collected in a wind tunnel; here, the results confirm the existence of a strong turbulence activity inside the canopy at a distance equal to 8 times the height of the canopy, referenced in the literature as the Enhance Gust Zone (EGZ) characterized by a local peak of the skewness factor.  相似文献   

18.
This paper discusses questions of constructing a solution of the gasdynamic equations near a line of curvature discontinuity at the surface of a detonation wave, propagating under Chapman—Jouguet conditions. It describes the construction of the solution in two cases: in a flow arising with the initiation of a detonation along a half-plane in a quiescent homogeneous combustible gas and in a flow arising with the initiation of a detonation along a half-line under these same conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 120–126, January–February, 1978.  相似文献   

19.
The equations of motion of a rigid body acted upon by general conservative potential and gyroscopic forces were reduced by Yehia to a single second-order differential equation. The reduced equation was used successfully in the study of stability of certain simple motions of the body. In the present work we use the reduced equation to construct a new particular solution of the dynamics of a rigid body about a fixed point in the approximate field of a far Newtonian centre of attraction. Using a transformation to a rotating frame we also construct a new solution of the problem of motion of a multiconnected rigid body in an ideal incompressible fluid. It turns out that the solutions obtained generalize a known solution of the simplest problem of motion of a heavy rigid body about a fixed point due to Dokshevich.  相似文献   

20.
The paper deals with an application of the plane strain analysis in a stochastic three-dimensional soil medium. In a framework of random elasticity theory, the geostatical state of stresses and the problem of a unit force acting in a statistically homogeneous half-space are considered. Only the modulus of elasticity is considered to be random and is modelled as a three-dimensional (3-D) homogeneous random field. As the result of imposed constrains due to the plane strain assumption the additional body and surface forces are induced. In order to determine them, additional equations must be introduced. The equations in a form of constrain relations are proposed in this paper. These equations are also valid for a case of uniformly distributed external loading.First, the two-dimensional (2-D) problem and its reduction to the uni-axial strain state, for the gravity forces and uniform, unlimited surface loading is considered. Then, it is generalised into a 2-D schematization of the 3-D state. Next, the problem of a unit force acting in a statistically homogeneous half-space is considered. For a 3-D state of stress and strain the resulting stresses are compared with those for a 2-D state. These stresses for the multidimensional state of strain and stress are presented as a sum of two components. The first one reflects plane strain state stresses and is given in a form of a 3-D random field. This term allows for incorporating a spatial, 3-D soil variability into a two-dimensional analysis. The second component can be treated as a correction term and it represents the longitudinal influence of a 3-D analysis.Some numerical results are presented in this paper. The proposed method can be regarded as a framework for further research aiming at application to a variety of geotechnical problems, for which the plane strain state is assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号