首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ge  Penghe  Wei  Xiukun  Liu  Jinzhao  Cao  Hongjun 《Nonlinear dynamics》2020,102(1):79-100

This paper presents the bifurcation behaviors of a modified railway wheelset model to explore its instability mechanisms of hunting motion. Equivalent conicity data measured from China high-speed railway vehicle are used to modify the wheelset model. Firstly, the relationships between longitudinal stiffness, lateral stiffness, equivalent conicity and critical speed are taken into account by calculating the real parts of the eigenvalues of the Jacobian matrix and Hurwitz criterion for the corresponding linear model. Secondly, measured equivalent conicity data are fitted by a nonlinear function of the lateral displacement rather than are considered as a constant as usual. Nonlinear wheel–rail force function is used to describe the wheel–rail contact force. Based on these modifications, a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force is set up, and then, some instability mechanisms of China high-speed train vehicle are investigated based on Hopf bifurcation, fold (limit point) bifurcation of cycles, cusp bifurcation of cycles, Neimark–Sacker bifurcation of cycles and 1:1 resonance. In particular, fold bifurcation of cycles can produce a vast effect on the hunting motion of the modified wheelset model. One of the main reasons leading to hunting motion is due to the fold bifurcation structure of cycles, in which stable limit cycles and unstable limit cycles may coincide, and multiple nested limit cycles appear on a side of fold bifurcation curve of cycles. Unstable hunting motion mainly depends on the coexistence of equilibria and limit cycles and their positions; if the most outward limit cycle is stable, then the motion of high-speed vehicle should be safe in a reasonable range. Otherwise, if the initial values are chosen near the most outward unstable limit cycle or the system is perturbed by noises, the high-speed vehicle will take place unstable hunting motion and even lead to serious train derailment events. Therefore, in order to control hunting motions, it may be the easiest way in theory to guarantee the coexistence of the inner stable equilibrium and the most outward stable limit cycle in a wheelset system.

  相似文献   

2.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

3.
Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark–Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. PACS 44.25.+f, 47.20.Ky, 47.52.+j  相似文献   

4.
The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability.  相似文献   

5.
In this paper, the occurrence of various types of bifurcation including symmetry breaking, period-doubling (flip) and secondary Hopf (Neimark) bifurcations in milling process with tool-wear and process damping effects are investigated. An extended dynamic model of the milling process with tool flank wear, process damping and nonlinearities in regenerative chatter terms is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. Non-autonomous parametrically excited equations of the system with time delay terms are developed. The multiple-scale approach is used to construct analytical approximate solutions under primary resonance. Periodic, quasi-periodic and chaotic behavior of the limit cycles is predicted in the presence of regenerative chatter. Detuning parameter (deviation of the tooth passing frequency from the chatter frequency), damping ratio (affected by process damping) and tool-wear width are the bifurcation parameters. Multiple period-doubling and Hopf bifurcations occur when the detuning parameter is varied. As the damping ratio changes, symmetry breaking bifurcation is observed whereas the variation of tool wear width causes both symmetry breaking and Hopf bifurcations. Also, under special damping specifications, chaotic behavior is seen following the Hopf bifurcation.  相似文献   

6.
武世江  张继业  隋皓  殷中慧  胥奇 《力学学报》2021,53(9):2569-2581
针对轮对系统中的非线性动力学问题, 本文基于Hopf分岔代数判据得到考虑陀螺效应的轮对系统Hopf分岔点解析表达式, 即轮对系统蛇形失稳的线性临界速度解析表达式. 基于分岔理论得到轮对系统的第一、第二Lyapunov系数表达式, 并结合打靶法分别得到不同纵向刚度下, 考虑陀螺效应与不考虑陀螺效应的轮对系统分岔图. 通过对比有无陀螺效应的轮对系统分岔图发现, 在同一纵向刚度下, 考虑陀螺效应的轮对系统线性临界速度和非线性临界速度均大于不考虑陀螺效应的轮对系统, 即陀螺效应可以提高轮对系统的运动稳定性. 基于Bautin分岔理论, 以纵向刚度和纵向速度作为参数, 分别得到考虑陀螺效应和不考虑陀螺效应的轮对系统, 从亚临界Hopf分岔到超临界Hopf分岔, 再从超临界Hopf分岔到亚临界Hopf分岔的迁移机理拓扑图. 通过对比有、无陀螺效应的轮对系统Bautin分岔拓扑图发现, 陀螺效应将改变轮对系统的退化Hopf分岔点, 但对于轮对系统Bautin分岔拓扑图的影响不大.   相似文献   

7.
In this paper, a nonlinear quadropoly game based on Cournot model with fully heterogeneous players is established. This game extends the model introduced by Tramontana and Elsadany (Nonlinear Dyn 68:187–193, 2012) who considered a heterogeneous triopoly game with an isoelastic demand function. Here, four different types of players and potentially different marginal costs are considered. Moreover, the assumption of an isoelastic demand function increases the nonlinearity of the final four-dimensional map. The stability of the resulting discrete-time dynamical system is analyzed. The existence of Neimark–Sacker bifurcation near the Nash equilibrium point of the game is shown. Also, based on the Kuznetsov’s normal form technique for discrete-time system, the stability of the Neimark–Sacker bifurcation is also discussed which indicates that the bifurcation is supercritical. Moreover, it is shown that the Nash equilibrium point of the game undergoes period-doubling (flip) bifurcation. Furthermore, the double route to chaotic dynamics in this model, via flip bifurcations and via Neimark–Sacker bifurcation of the Nash equilibrium point, is illustrated. Coexistence of multi-chaotic attractors of the model is illustrated. Simulation tools like bifurcation diagrams, stability regions of parameters, Lyapunov exponent spectrum, phase plots and basins of attraction are used to verify the complex dynamics of the game.  相似文献   

8.
A single degree-of-freedom nonlinear mechanical model of the stick–slip phenomenon is studied when the Stribeck-type friction force is emulated by means of a digitally controlled actuator. The relative velocity of the slipping contact surfaces is considered as bifurcation parameter. The original physical system presents subcritical Hopf bifurcation with a wide bistable parameter region where stick–slip and steady-state slipping are both stable locally. Hardware-in-the-loop experiments are performed with a physical oscillatory system subjected to the emulated Stribeck forces. The effect of sampling time is studied with respect to the stability and nonlinear behavior of this experimental system. The existence of subcritical Neimark–Sacker bifurcations are proven in the digital system, the stability and bifurcation characteristics of the continuous and the digital systems are compared, and the counter-intuitive stabilizing effect of sampling time is shown both analytically and experimentally. The conclusions draw the attention to the limitations of hardware-in-the-loop experiments when the corresponding systems are strongly nonlinear.  相似文献   

9.
This paper analyzes the double Neimark–Sacker bifurcation occurring in a two-DoF system, subject to PD digital position control. In the model the control force is considered piecewise constant. Introducing a nonlinearity related to the saturation of the control force, the bifurcations occurring in the system are analyzed. The system is generally losing stability through Neimark–Sacker bifurcations, with relatively simple dynamics. However, the interaction of two different Neimark–Sacker bifurcations steers the system to much more complicated behavior. Our analysis is carried out using the method proposed by Kuznetsov and Meijer. It consists of reducing the dynamics of the nonlinear map to its local center manifold, eliminating the non-internally resonant nonlinear terms and transforming the nonlinear map to an amplitude map, that describes the local dynamics of the system. The analysis of this amplitude map allows us to define regions, in the space of the control gains, with a close interaction of the two bifurcations, which generates unstable quasiperiodic motion on a 3-torus, coexisting with two stable 2-torus quasiperiodic motions. Other regions in the space of the control gains show the coexistence of 2-torus quasiperiodic solutions, one stable and the other unstable. All the results described in this work are analytical and obtained in closed form, numerical simulations illustrate and confirm the analytical results.  相似文献   

10.
Hysteresis phenomena and multistability play crucial roles in the dynamics of coupled oscillators, which are now interpreted from the point of view of codimension-two bifurcations. On the Ott–Antonsen’s manifold, two-parameter bifurcation sets of delay-coupled Kuramoto model are derived regarding coupling strength and delay as bifurcation parameters. It is rigorously proved that the system must undergo Bautin bifurcations for some critical values; thus, there always exists saddle-node bifurcation of periodic solutions inducing hysteresis loop. With the aid of center manifold reduction method and the MATLAB package DDE-BIFTOOL, the location of Bautin and double Hopf points and detailed dynamics are theoretically determined. We find that, near these critical points, four coherent states (two of which are stable) and a stable incoherent state may coexist and that the system undergoes Neimark–Sacker bifurcation of periodic solutions. Finally, the clear scenarios about the synchronous transition in delayed Kuramoto model are depicted.  相似文献   

11.
Considering a two DoF system subject to digital position control, of interest for robotic application, we analyze the dynamics of the system at the intersection of two loci of Neimark–Sacker bifurcations, where a double Neimark–Sacker bifurcation is taking place. In the system, the saturation of the control force is the only nonlinear term considered, other than this, the system is piecewise linear. Starting from the analytical investigation already performed in Part I (Habib et al. in Nonlin. Dyn., under review, 2013), in this paper the effects of an asymmetry of the saturation of the control force are investigated, both analytically and numerically. The results show the increasing complexity of the dynamics for a more and more asymmetric system. First, the asymmetry is making the bifurcation transit from supercritical to subcritical, then it generates a stable torus that breaks down into a strange attractor, associated with a chaotic motion. In the last part of the paper, the torus breakdown and the onset of chaos are investigated, furthermore the evolution of complex dynamics through regions of phase locking and higher-dimensional chaos is outlined.  相似文献   

12.
Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.  相似文献   

13.
史禾慕  曾晓辉  吴晗 《力学学报》2022,54(7):1807-1819
在对铁路车辆系统的极限环幅值和非线性临界速度进行分析时通常采用数值方法, 不便于研究其随系统参数的变化规律. 轮对系统保留了影响车辆系统动力学性能的几个关键要素: 如轮轨几何非线性约束、轮轨接触蠕滑关系和悬挂系统等, 可以反映铁路车辆系统蛇行运动的本质特性. 轮对系统自由度少、参数少, 可以采用解析方法进行分析. 本文选取合适的特征量把轮对非线性动力学方程无量纲化, 得到了带有小参数的两自由度微分方程; 采用多尺度方法对该方程进行了解析求解; 给出了轮对系统极限环幅值的解析表达式并对其稳定性进行了判定; 给出了轮对系统的分岔速度解析表达式, 并进而获得系统的非线性临界速度的解析表达式. 在对得到的解析解用数值结果进行验证后, 用得到的解析解进行了系统参数影响分析. 传统的分岔图计算方法(如降速法、路径跟踪法等)需对微分方程进行大量数值积分计算方可求解系统的非线性临界速度值, 而通过本文获得的解析表达式可直接给出系统的非线性临界速度值和极限环幅值, 便于研究轮对系统动力学特性随参数的变化规律,进行快速方案比对和筛选, 为转向架结构优化设计提供参考.   相似文献   

14.
Yabuno  H.  Okamoto  T.  Aoshima  N. 《Meccanica》2002,37(6):555-568
Railway wheelset experiences the problem of hunting above a critical speed, which is a kind of self-excited oscillation. At the critical speed, it is known that the system undergoes a subcritical Hopf bifurcation. Therefore, for clarifying the nonlinear characteristics of hunting it is very important to detect, for example, the nonlinear forces in the wheelset due to the creep forces acting between the wheels and rails, and the nonlinear component of the resorting forces by the suspensions. However, it is impossible to determine each force quantitatively. In the present paper, it is first shown, by using the center manifold theory and the method of normal form, that the nonlinear characteristics of the bifurcation in a wheelset model with two degrees of freedom are governed by a single parameter, hence each nonlinear force need not be detected when examining the nonlinear characteristics. Also, a method of determining the governing parameter from experimentally observed radiuses of the unstable limit cycle is proposed. Next, we experimentally investigate the variation of the parameter due to the presence of linear spring suspensions in the lateral direction and discuss the variation of the nonlinear characteristics of the hunting motion, which depends on the lateral stiffness. As a result, the improvement of the stability of the wheelset against the disturbance by the linear spring suspensions is clarified.  相似文献   

15.
Hopf分岔的代数判据及其在车辆动力学中的应用   总被引:14,自引:0,他引:14  
张继业  杨翊仁  曾京 《力学学报》2000,32(5):596-605
利用Hurwitz行列式,给出平衡点失稳而发生Hopf分岔的代数判定准则和计算方法,这一方法将Hopf分岔点的求解转化为一个非线性方程的求解问题,从而克服了以前方法在计算Hopf分岔点时,对于参数的每一次变化通过求特征根并判定特征根的实部是否为零的庞大工作量。应用这一方法,我们进行了非线性车辆系统蛇行运动稳定性的研究,得到了轮对系统发生蛇行运动的临界速度的解析表达式。  相似文献   

16.
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.  相似文献   

17.
We design a piezoaeroelastic energy harvester consisting of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. We choose the linear springs to produce the minimum flutter speed and then implement a linear velocity feedback to reduce the flutter speed to any desired value and hence produce limit-cycle oscillations at low wind speeds. Then, we use the center-manifold theorem to derive the normal form of the Hopf bifurcation near the flutter onset, which, in turn, is used to choose the nonlinear spring coefficients that produce supercritical Hopf bifurcations and increase the amplitudes of the ensuing limit cycles and hence the harvested power. For given gains and hence reduced flutter speeds, the harvested power is observed to increase, achieve a maximum, and then decrease as the wind speed increases. Furthermore, the response undergoes a secondary supercritical Hopf bifurcation, resulting in either a quasiperiodic motion or a periodic motion with a large period. As the wind speed is increased further, the response becomes eventually chaotic. These complex responses may result in a reduction in the generated power. To overcome this adverse effect, we propose to adjust the gains to increase the flutter speed and hence push the secondary Hopf bifurcation to higher wind speeds.  相似文献   

18.
In this paper, the Hopf bifurcations and limit cycle oscillations (LCOs) of an airfoil with cubic nonlinearity in supersonic\hypersonic flow are investigated. The harmonic balance method and multivariable Floquet theory are applied to analyze the LCOs of the airfoil. Four distinct cases of the LCOs response are detected in this system: (I) supercritical Hopf bifurcation, (II) a single subcritical Hopf bifurcation, (III) two subcritical Hopf bifurcations, and (IV) no Hopf bifurcation. Furthermore, the parameter variations domains separating the supercritical and subcritical Hopf bifurcations are presented using singularity theory.  相似文献   

19.

The regular and chaotic vibrations of a nonlinear structure subjected to self-, parametric, and external excitations acting simultaneously are analysed in this study. Moreover, a time delay input is added to the model to control the system response. The frequency-locking phenomenon and transition to quasi-periodic oscillations via Hopf bifurcation of the second kind (Neimark–Sacker bifurcation) are determined analytically by the multiple time scales method up to the second-order perturbation. Approximate solutions of the quasi-periodic motion are determined by a second application of the multiple time scales method for the slow flow, and then, slow–slow motion is obtained. The similarities and differences between the van der Pol and Rayleigh models are demonstrated for regular, periodic, and quasi-periodic oscillations, as well as for chaotic oscillations. The control of the structural response, and modifications of the resonance curves and bifurcation points by the time delay signal are presented for selected cases.

  相似文献   

20.
The weakly nonlinear resonant response of an orthogonal double pendulum to planar harmonic motions of the point of suspension is investigated. The two pendulums in the double pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums, the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of four first order autonomous differential equations in the amplitude and phase variables. Constant solutions of the amplitude and phase equations are studied as a function of physical parameters of interest using the local bifurcation theory. It is shown that, for excitation restricted in either plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle solutions, respectively. The dynamics of the amplitude equations in parameter regions of the Hopf bifurcations is then explored using direct numerical integration. The results indicate a complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route to chaos, and sudden disappearance of chaotic attractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号