首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we generalize the Pfaff–Birkhoff principle to the case of containing fractional derivatives and obtain the so-called fractional Pfaff–Birkhoff–d’Alembert principle. The fractional Birkhoff equations in the sense of Riemann–Liouville fractional derivative are derived. Under the framework of variational integrators, we develop the discrete fractional Birkhoff equations by approximating the Riemann–Liouville fractional derivative with the shifted Grünwald–Letnikov fractional derivative. The resulting algebraic equations can be served as an algorithm to numerically solve the fractional Birkhoff equations. A numerical example is demonstrated to show the validity and applicability of the presented methodology.  相似文献   

3.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The observation that the hyperbolic shallow water equations and the Green–Naghdi equations in Lagrangian coordinates have the form of an Euler–Lagrange equation with a natural Lagrangian allows us to apply Noether's theorem for constructing conservation laws for these equations. In this study the complete group analysis of these equations is given: admitted Lie groups of point and contact transformations, classification of the point symmetries and all invariant solutions are studied. For the hyperbolic shallow water equations new conservation laws which have no analog in Eulerian coordinates are obtained. Using Noether's theorem a new conservation law of the Green–Naghdi equations is found. The dependence of solutions on the parameter is illustrated by self-similar solutions which are invariant solutions of both models.  相似文献   

5.
The existing ideas on the status of the Navier–Stokes equations are changed in taking into account the following facts: generally speaking, the terms of these equations neglected in the boundary layer equations are of the order of certain Burnett terms in the conservation equations; the Navier–Stokes equations cannot be used to describe slow nonisothermal gas flows since in this case it is necessary to take the Burnett temperature stresses into account; and in the transport relations the Burnett terms determine certain effects (for example, the mechanocaloric effect).  相似文献   

6.
The lattice‐BGK method has been extended by introducing additional, free parameters in the original formulation of the lattice‐BGK methods. The relationship between these parameters and the macroscopic moment equations is analysed by Taylor series and Chapman–Enskog expansion. The parameters are determined from the macroscopic moment equations by comparisons with the governing equations to be modelled. Extensions are presented for the Navier–Stokes equations at low Mach numbers in Cartesian or axisymmetric coordinates with constant or variable density, for scalar convection–diffusion equations and for equations of Poisson type. The generalized lattice‐BGK concept is demonstrated by two applications of chemical engineering. These are the computation of chemically reacting flow through an axisymmetric reactor and of the transport and deposition of particles to filters under the action of different forces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We design an artificial boundary condition for the steady incompressible Navier–Stokes equations in streamfunction–vorticity formulation in a flat channel with slip boundary conditions on the wall. The new boundary condition is derived from the Oseen equations and the method of lines. A numerical experiment for the non-linear Navier–Stokes equations is presented. The artificial boundary condition is compared with Dirichlet and Neumann boundary conditions for the flow past a rectangular cylinder in a flat channel. The numerical results show that our boundary condition is more accurate.  相似文献   

10.
In a previous work (Park HM, Lee MW. An efficient method of solving the Navier–Stokes equation for the flow control. International Journal of Numerical Methods in Engineering 1998; 41 : 1131–1151), the authors proposed an efficient method of solving the Navier–Stokes equations by reducing their number of modes. Employing the empirical eigenfunctions of the Karhunen–Loève decomposition as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear sub‐space that is sufficient to describe the observed phenomena, and consequently, reduce the Navier–Stokes equations defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. In the present work, we apply this technique, termed the Karhunen–Loève Galerkin procedure, to a pointwise control problem of Navier–Stokes equations. The Karhunen–Loève Galerkin procedure is found to be much more efficient than the traditional method, such as finite difference method in obtaining optimal control profiles when the minimization of the objective function has been done by using a conjugate gradient method.  相似文献   

11.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

12.
We consider equations and algorithms describing the operation of strapdown inertial navigation systems (SINS) intended for determining the inertial attitude parameters (the Rodrigues–Hamilton (Euler) parameters) and the apparent velocity of a moving object. The construction of these equations and algorithms is based on the Kotelnikov–Study transference principle, Hamiltonian quaternions and Clifford biquaternions, and differential equations in four-dimensional (quaternion and biquaternion) orthogonal operators.  相似文献   

13.
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler–Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler–Voigt equations also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization parameter \(\alpha >0\). Therefore, the new blow-up criteria allow one to gain information about possible singularity formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler–Voigt equations. The new criteria are only known to be sufficient criterion for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well known to occur.  相似文献   

14.
In this paper, we study the well-posedness of Cahn–Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn–Hilliard equations with non-degenerate mobilities.  相似文献   

15.
A new boundary element procedure is developed for the solution of the streamfunction–vorticity formulation of the Navier–Stokes equations in two dimensions. The differential equations are stated in their transient version and then discretized via finite differences with respect to time. In this discretization, the non-linear inertial terms are evaluated in a previous time step, thus making the scheme explicit with respect to them. In the resulting discretized equations, fundamental solutions that take into account the coupling between the equations are developed by treating the non-linear terms as in homogeneities. The resulting boundary integral equations are solved by the regular boundary element method, in which the singular points are placed outside the solution domain.  相似文献   

16.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we develop an abstract framework to establish ill-posedness, in the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable spectra. We apply this to prove the ill-posedness for the hydrostatic Euler equations as well as for the kinetic incompressible Euler equations and the Vlasov–Dirac–Benney system.  相似文献   

19.
20.
This paper summarizes the method-of-lines (MOL) solution of the Navier–Stokes equations for an impulsively started incompressible laminar flow in a circular pipe with a sudden expansion. An intelligent higher-order spatial discretization scheme, which chooses upwind or downwind discretization in a zone-of-dependence manner when flow reversal occurs, was developed for separated flows. Stability characteristics of a linear advective–diffusive equation were examined to depict the necessity of such a scheme in the case of flow reversals. The proposed code was applied to predict the time development of an impulsively started flow in a pipe with a sudden expansion. Predictions were found to show the expected trends for both unsteady and steady states. This paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs). Solutions of the Navier–Stokes equations in primitive variables formulation by using the MOL and intelligent higher-order spatial discretization scheme are not available to date. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号