首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meng  Qing-Xin  Lai  Xu-Zhi  Wang  Ya-Wu  Wu  Min 《Nonlinear dynamics》2018,94(1):615-626
Nonlinear Dynamics - This paper presents a stable control strategy based on system energy for a Planar Single-Link Flexible Manipulator (PSLFM) to quickly realize its control objective, which is to...  相似文献   

2.
The attitude regulation control problem for flexible spacecraft is investigated in this paper. Two extended PD+variable structure controllers are proposed using passivity-based control technique instead of sliding mode control approach. The first controller is a basic one, while the second one is an extension of the first one which relaxes the bound requirement for the external disturbances. In the presence of model uncertainties and external disturbances, both controllers presented in this research can make the flexible spacecraft UGAS (uniformly globally asymptotically stable). By virtue of related analysis tools, stability of the proposed controllers is proven theoretically. Numerical simulations are also included to demonstrate the performance of the developed controllers.  相似文献   

3.
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.  相似文献   

4.
In order to improve motion accuracy of the flexible manipulator, an idea of using its topological characteristics to suppress vibration is suggested. The concept of controllable local degree of freedom is proposed and introduced to the topological structure of the flexible manipulator. It is shown that the arbitrary motion provided by the controllable local degrees of freedom plays an important role in eliminating undesired effects of the flexibility. On this basis, a method for reducing motion error of the flexible manipulator is put forward. By planning the motion of controllable local degrees of freedom, the appropriate control force can be constructed to increase the damping force and eliminate the exciting force of the flexible manipulator, thereby improving the end-effector accuracy. The results, demonstrated by the numerical simulations, are highly promising and suggest that controllable local degrees of freedom can be a useful tool in combating the undesired vibration deformation of the flexible manipulator.  相似文献   

5.
In this paper, a fuzzy adaptive controller is proposed for a single-link flexible-joint robot. Fuzzy logic systems are used to approximate unknown nonlinearities, and then a fuzzy state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping design with dynamic surface control (DSC) technique, a fuzzy adaptive output-feedback backstepping control approach is developed. It is proved that all the signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded (SGUUB), and both the observer and tracking errors converge to a small neighborhood of the origin by appropriate choosing the design parameters. The simulation results are provided to demonstrate the effectiveness of the proposed controller. Two key advantages of our scheme are that (i)?the proposed control method does not require that the link velocity and actuator velocity of single-link flexible-joint robot be measured directly, and (ii)?the problem of ??explosion of complexity?? is avoided.  相似文献   

6.
The present work deals with the non-linear vibration of a harmonically excited single link roller-supported flexible Cartesian manipulator with a payload. The governing equation of motion of this system is developed using extended Hamilton's principle, which is reduced to the second-order temporal differential equation of motion, by using generalized Galerkin's method. This equation of motion contains both cubic non-linearities of geometric and inertial type in addition to linear forced and non-linear parametric excitation terms. Method of multiple scales is used to solve this non-linear equation and study the stability and bifurcations of the system. Influence of amplitude of the base excitation and mass ratio on the steady state response of the system is investigated for both simple and subharmonic resonance conditions. Critical bifurcation points are determined from the fixed-point responses and periodic, quasi-periodic responses are also found for different system parameters. The results obtained using the perturbation analysis are compared with the previously published experimental work and are found to be in good agreement. This work will be useful for the designer of a flexible manipulator.  相似文献   

7.
The dynamics of a flexible manipulator is investigated in this paper. From the point of view of dynamic blance, the motion equations of a rotating beam with tip load are established by using Hamilton's principle. By taking into account the effects of dynamic stiffening and dynamic softening, the stability of the system is proved by employing Lyapunov's approach. Furthermore, the method of power series is proposed to find the exact solution of the eigenvalue problem. The effects of rotating speed and tip load on the vibration behavior of the flexible manipulator are shown in numerical results. Supported by National Natural Science Foundation. of China  相似文献   

8.
9.
Numerical simulations using an improved version of the immersed boundary method are performed to explore a passive control concept for a single flexible flag in a viscous uniform flow. In order to control a single flag passively, we utilize the distinct dynamics of two side-by-side flags, characterized by in-phase and out-of-phase flapping modes depending on their spanwise gap distance. When the two side-by-side flags are in an in-phase flapping mode with a small spanwise gap distance, the flapping amplitude of a single downstream flag is highly enhanced due to synchronization between the vortices shed from the upstream and downstream flags. However, when the two upstream flags flap in an out-of-phase flapping mode with a large spanwise gap distance, the flapping of the single flag is significantly weakened with a reduction of the dominant flapping frequency. Because the upstream flags induce consecutive counter-rotating vortex pairs with a high frequency due to their flapping mode (out-of-phase state), relatively strong interaction with an upcoming vortex of the opposite rotational direction leads to flapping inhibition of the single flag. For an intermediate spanwise gap distance, the vortex-to-vortex interaction between the flags becomes more complicated, and a change of the flapping phases of the two side-by-side flags depending on streamwise gap distance between the upstream and downstream flags occurs. The interactions between coupled flags are documented through the root-mean-square cross-stream tail positions, frequency, drag coefficient, vorticity and pressure contours of the flags with varying non-dimensional parameters relevant to the problem. The proposed passive control concept of a single flag using two side-by-side flags is applicable to the development of energy harvesting systems to extract more energy and flapping control systems to suppress vibration.  相似文献   

10.
In this paper modified first-order decoupled equations of motion for rigid serial manipulators are presented. Motivated the results obtained by Loduha and Ravani [Loduha, T.A., Ravani, B., 1995. On first-order decoupling of equations of motion for constrained dynamical systems. Transactions of the ASME Journal of Applied Mechanics 62, 216.] slightly different inertial quasi-velocities are proposed. Instead of generalized velocity components (GVC) one useful form of GVC’s is introduced here. It is shown that the modified quantities (called here modified inertial generalized velocity components—MIGVC) lead to some interesting properties which give different look at manipulator dynamics. Some properties arising from MIGVC are also discussed. An example of 3 d.o.f. 3-D robot DDArm illustrates the results.  相似文献   

11.
A study is made of a controllable mechanical system in the form of a Timoshenko beam with a weight. The system models a flexible-link robot manipulator. A Galerkin approximation based on the solutions of the corresponding Sturm-Liouville problem is constructed for the partial differential equations of motion. Conditions of local controllability of the Galerkin approximation in the neighborhood of the system’s equilibrium state are established. The stabilizability of the equilibrium state is proved, and an explicit scheme for feedback control design is proposed __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 107–115, December 2005.  相似文献   

12.
13.
Financial systems are known to have irregular and erratic fluctuations due to diverse influences and often result in economic crisis and huge financial losses. Recent models of financial systems show that they behave chaotically and have long range memory dependence. Mitigating these undesirable chaotic natures of financial systems by appropriate control policies is important in order to reduce investment risks and improve economic performance. In this paper, a fractional order fuzzy control policy is employed to suppress the chaotic dynamics of a representative chaotic fractional order financial system. An intelligent Regrouping Particle Swarm Optimization (Reg-PSO) is used to design the numeric weights of the control policy and the methodology is demonstrated by credible simulations. The designed fractional fuzzy control policies are shown to work well with respect to conventional fuzzy control policies in the presence of persistent and anti-persistent noise, which can be due to additional extraneous influences on the system.  相似文献   

14.
In this paper, a new approach for dynamic analysis of the flexible multibody manipulator systems is described. The organization of the computer implementations which are used to automatically construct and numerically solve the system of loosely coupled dynamic equations expressed in terms of the absolute, joint and elastic coordinates is discussed. The main processor source code consists of three main modules: constraint module, mass module and force module. The constraint module is used to numerically evaluate the relationship between the absolute and joint accelerations. The mass module is used to numerically evaluate the system mass matrix as well as the non-linear Coriolis and centrifugal forces associated with the absolute, joint and elastic coordinates. At the same time, the force module is used to numerically evaluate the generalized external and elastic forces associated with the absolute, joint and elastic coordinates. Computational efficiency is achieved by taking advantage of the structure of the resulting system of loosely coupled equations. The absolute, joint and elastic accelerations are integrated forward in time using direct numerical integration methods. The absolute positions and velocities can then be determined using the kinematic relationships. The flexible 2-DOF double-pendulum and spatial manipulator systems are used as illustrated examples to demonstrate and verify the application of the computational procedures discussed in this paper.  相似文献   

15.
Rotor-shaft systems are subject to non-uniform spin speed during start-up, coast-down or any non-stationary situation changing the spin speed suddenly, e.g., load fluctuation or sudden mass-loss like loss of a blade or a part thereof. For a flexurally and torsionally compliant rotor-shaft, the dynamics under non-uniform spin-speed shows inertial coupling among transverse and torsional coordinates through mass-unbalance and gyroscopic effect. This results into coupled transverse-torsional vibration, where torsional response consists of significant harmonic components at bisynchronous spin frequency, torsional natural frequency of the shaft, and at combination frequencies corresponding to sum and difference of spin and transverse natural frequencies and twice the transverse natural frequency of the rotor-shaft. As a result of the coupling, transverse rotor motion also influences the torsional motion. The Method of Multiple Scales (MMS) is used in this work to carry out an analysis of a simplified system to get an idea about the dominant frequencies of excitation. Results of numerical simulation are presented next to show the effectiveness and influence of actively controlling the transverse rotor motion on its torsional motion, at the dominant frequencies, with the help of non-contact electromagnetic force from an actuator. Transverse vibration control is also observed to control the torsional oscillations due to coupled nature of the problem. The Stability Limit Speed (SLS) of the system is also increased as a result of application of the active control action. Constant axial torque is observed to diminish the influence of coupling, and protect the system against torsional instability, but control action is a must to stabilize the transverse vibration of the system above SLS.  相似文献   

16.
In this paper, a synchronisation strategy between a controlled master and three-slave two-link flexible manipulators is proposed. Two out of the three slaves are identical with the master, whereas the third one is non-identical. The master and the slave manipulators are modelled by assumed modes and lumped parameter methods, respectively. The 12 states of the master manipulator are synchronised to the 8 states of each slave manipulator. Such projective synchronisation is also not available in the literature. A global sliding mode controller is designed first for the master manipulator to track the desired trajectory. Next, the synchronisation between the master and the slaves is achieved by designing an adaptive time-varying super-twisting global sliding mode controller. The simulation results reveal that the performances of the proposed controller in terms of (i) steady-state error of synchronisation, (ii) synchronisation time and (iii) links deflection are much better than the existing controller proposed in 2016.  相似文献   

17.
The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting to the controller and the disturbances, but there is only one controller. It is a local control system, the system parameters depend only on the characteristics of the structure bounded by the sensors and the controller, and we need not take into account the boundary conditions and the properties of structures outside of this field. The system is efficient when a structure vibrates in middle and high frequency regions. Some control design rules are developed from the calculation results. The project supported by the National Natural Science Foundation of China and Post Doctorate Science Fund of China  相似文献   

18.

In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws.

  相似文献   

19.
20.
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号