首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have experimentally studied the absorption spectra of hydrocarbon mixtures based on n-heptane and isooctane with small (1%–2%) additions of aromatic hydrocarbons (benzene, toluene, xylene). The study was conducted in the region of the first overtones of the vibrational spectra for the hydrocarbon groups CH3, CH2, CH. We show that four-component modeling of the absorption spectrum of the hydrocarbon mixture and minimization of the deviation of the model spectrum from the experimental spectrum allow us to separately determine the content of the aromatic additives for concentrations from 1%.  相似文献   

2.
Detonation structure with pressure-dependent chain-branching kinetics   总被引:3,自引:0,他引:3  
We study multi-dimensional stability and perform high resolution two-dimensional numerical simulations of detonations with a four-step chain-branching reaction model. The reaction model is designed to approximate hydrogen chemistry. It consists of a chain-initiation step and a chain-branching step, both temperature-dependent with Arrhenius kinetics, followed by two pressure-dependent termination steps. Increasing the chain-branching activation energy shortens the ZND reaction length and leads to more unstable detonations, according to the stability analysis. Computations with four values of the chain-branching activation energy are performed both in narrow and wide channels. In the wider channel, all cases studied show distinct keystone-shaped regions, associated with substantial differences in reactivity across the shear layer hence of the time and distance until chain-branching takes place. As the chain-branching activation energy increases, cells take a shorter time to form, and the ratio cell length over width decreases. The cell size is dominated by the longer unstable wavelength even when high frequency modes are more unstable, but cells appear earlier in narrow channels than in wider ones. Initially, the cellular structure looks weaker, and the cell size is dominated by the shorter, more unstable wavelength, but eventually, it adapts to the longest unstable wavelength still consistent with the domain width.  相似文献   

3.
Detonation in gases   总被引:1,自引:0,他引:1  
We review recent progress in gaseous detonation experiment, modeling, and simulation. We focus on the propagating detonation wave as a fundamental combustion process. The picture that is emerging is that although all propagating detonations are unstable, there is a wide range of behavior with one extreme being nearly laminar but unsteady periodic flow and the other chaotic instability with highly turbulent flow. We discuss the implications of this for detonation propagation and dynamic behavior such as diffraction, initiation, and quenching or failure.  相似文献   

4.
A numerical study was conducted to explore the mechanisms of detonation initiation in a stoichiometric hydrogen-air mixture resulting from the interaction between a Mach 2.8 shock and a perturbed material interface. The simulations used a high-order compressible numerical method for fluid dynamics with both detailed and simplified chemical-diffusive models. Three material interfaces were considered: no interface, a perturbed planar flame, and a perturbed helium interface. The case with no interface did not evolve into a detonation. The case with the flame produced a series of additional shock-flame and shock-shock interactions. The shock-shock interactions produced a series of contact surfaces and sliplines with increasing temperature. Hot spots eventually formed along these sliplines and a detonation was initiated shortly thereafter through a reactivity gradient mechanism. The overall process of detonation initiation was similar for both detailed and simplified chemical-diffusive models. Only the fine details, such as the precise time and location of the hot spots, were different. This indicates that simplified chemical-diffusive models are adequate to describe the initiation of detonations in the present configuration. The processes that ignited the detonation were also similar in the case where the flame was replaced with a helium interface. Helium has a similar acoustic impedance to the products and produced similar wave refraction patterns. Thus, the primary effect of the flame is to facilitate the shock-shock interactions that produce hot spots and initiate the detonation. The chemical energy released by the flame has a secondary influence.  相似文献   

5.
Detonation front structure and the competition for radicals   总被引:1,自引:0,他引:1  
We examine the role of competition for radical species in determining detonation front structure for hydrogen and selected hydrocarbon fuels in air and oxygen. Numerical simulations and detailed reaction mechanisms are used to characterize the reaction zone length, shape, and sensitivity to temperature variation. We find that the effect of the competition for radicals on the energy release rate characteristics varies significantly for the chosen mixtures. Hydrogen exhibits a strong effect while in methane and ethane mixtures the effect is absent. Other hydrocarbons including acetylene, ethylene, and propane fall between these extreme cases. This competition is manifested by a peak in effective activation energy associated with a shift in the dominant reaction pathway in the initial portion of the reaction zone. The peak of the effective activation energy is centered on the extended second explosion limit. A five-step, four species reaction model of this competition process has been developed and calibrated against numerical simulations with detailed chemistry for hydrogen. The model includes a notional radical species and reactive intermediate in addition to reactants and products. The radical species undergoes chain-branching and there is a competing pathway through the reactive intermediate that is mediated by a three-body reaction followed by decomposition of the intermediate back to the radical species. We have used this model in two-dimensional unsteady simulations of detonation propagation to examine the qualitative differences in the cellular instability of detonation fronts corresponding to various degrees of competition between the chain-branching and reactive intermediate production. As the post-shock state approaches the region of competition between the radical and reactive intermediate, the detonation front becomes irregular and pockets of the reactive intermediate appear behind the front, but the detonation continues to propagate.  相似文献   

6.
The structure of ZND waves under simple three step chain-branching kinetics is analyzed, assuming a slow initiation rate but arbitrary chain-branching activation energy. The analysis allows for a complete solution for the ZND wave in all cases, inside or outside the chain-branching explosion region, or close to the explosion limit. Results show that even when the von Neumann point is inside the explosion region, chain-branching effectively stops and the chain-branching radical concentration reaches a small near-steady value before all the reactant is consumed. Beyond that point, chemistry proceeds slowly, at a rate of the order of the initiation rate. For a von Neumann point relatively close to the limit, the reactant concentration is still quite significant when chain-branching stops, but diminishes for von Neumann points deeper inside the explosion region. The assumption that initiation is much slower than chain-branching is often quite accurate, in which case the length required for complete burn is orders of magnitude longer than the chain-branching length, so that as a practical matter, combustion never completes. In contrast, numerical simulation shows that under the same conditions, the cellular wave results in a more complete burn.  相似文献   

7.
DNS is performed for a statistically one dimensional layer of a spray region resembling diesel engine conditions. The group and collective combustion regimes are identified according to the ratio of the chemical and transport time scales for a single droplet. The statistics in group combustion are similar with those in gas phase combustion. The collective combustion regime involves interspersed rich regions with different dissipation characteristics. Reasonable agreements are shown with the scaled AMC model and the linear evaporation model in the ranges of meaningful probability. Initially the evaporation terms are dominant in the budgets of the conditional enthalpy equation. After ignition the chemical reaction term becomes dominant to be balanced by the time rate of change term. For modeling turbulent spray combustion it may not be essential to consider detailed micro structures around each droplet, unless in the droplet combustion regime.  相似文献   

8.
In this study, direct initiation of spherical detonations in highly argon diluted mixtures is investigated. Direct initiation is achieved via a high voltage capacitor spark discharge and the critical energy is estimated from the analysis of the current output. Stoichiometric acetylene–oxygen mixtures highly diluted with 70% argon is used in the experiment. Previous investigations have suggested that detonations in mixtures that are highly diluted with argon have been shown to be “stable” in that the reaction zone is at least piecewise laminar described by the ZND model and cellular instabilities play a minor role on the detonation propagation. For the acetylene–oxygen mixture that is highly diluted with argon, the experimental results show that the critical energy where the detonation is “stable” is in good agreement with the Zel’dovich criterion of the cubic dependence on the ZND reaction length, which can be readily determined using the chemical kinetic data of the reaction. The experimental results are also compared with those estimated using Lee’s surface energy model where empirical data on detonation cell sizes are required. Good agreement is found between the experimental measurement and theoretical model prediction, where the breakdown of the 13λ relationship for critical tube diameter – and hence a different propagation and initiation mechanism – is elucidated in highly argon diluted mixtures and this appears to indicate that cellular instabilities do not have a prominent effect on the initiation process of a stable detonation.  相似文献   

9.
10.
强爆轰参数的理论估算   总被引:4,自引:0,他引:4       下载免费PDF全文
用两相的排平物态方程对硝基甲烷的强爆轰参数进行了理论估算 ,理论值与拟稳态强爆轰的实验值(爆速、爆压和爆温 )符合得很好 .这既检验了这种理论估算方法 ,也再次检验了爆轰的ZND理论和两相的排平物态方程 ,也是对实验方法的一种支持 .常k形物态方程的强爆轰参数理论估算方法也得到了有条件的肯定  相似文献   

11.
Paper reports a result of experiments of spherical shock waves generated by explosions of micro-explosives weighing from 1 to 10 mg ignited by the irradiation of Q-switched laser beam and direct initiation to a spherical detonation wave in stoichiometric oxygen/hydrogen mixtures at 10–200 kPa. We visualized the interaction of debris particles ejected micro-explosives’ surface with shock waves by using double exposure holographic interferometry and high-speed video recording. Upon explosion, minute inert debris launched supersonically from micro-charge surface precursory to shock waves initiated spherical detonation waves. To examine this effect we attached 0.5–2.0 μm diameter SiO2 particles densely on micro-explosive surfaces and observed that the supersonic particles, significantly promoted the direct initiation of spherical detonation waves. The domain and boundary of detonation wave initiations were experimentally obtained at various initial pressures and the amount of micro-charges.  相似文献   

12.
Detonation waves in gases are unstable and form cellular structures. The cellular structure can range from being very regular, to very irregular, where new modes are continuously formed on the front of the detonation wave. The present work addresses the mechanism of new cell formation in irregular structure detonations. Using idealized one-step chemistry calculations on sufficiently wide domains, as to avoid mode-locking, the present work reveals a novel mechanism for new mode formation in cellular detonations. The mechanism involves the creation of wave bifurcations on the front of the Mach shock following triple shock collisions. The numerical simulations reveal that these new triple points, through further reflections with pre-existing modes in asymmetric cells, can give rise to cell multiplication. Parameters favourable to this mechanism were found in good correlation with parameters leading to irregular cellular structures, as observed in previous experiments.  相似文献   

13.
14.
Three-dimensional n-heptane spray flames in a swirl combustor are investigated by means of direct numerical simulation (DNS) to provide insight into realistic spray evaporation and combustion as well as relevant modeling issues. The variable-density, low-Mach number Navier–Stokes equations are solved using a fully conservative and kinetic energy conserving finite difference scheme in cylindrical coordinates. Dispersed droplets are tracked in a Lagrangian framework. Droplet evaporation is described by an equilibrium model. Gas combustion is represented using an adaptive one-step irreversible reaction. Two different cases are studied: a lean case that resembles a lean direct injection combustion, and a rich case that represents the primary combustion region of a rich-burn/quick-quench/lean-burn combustor. The results suggest that premixed combustion contribute more than 70% to the total heat release rate, although diffusion flame have volumetrically a higher contribution. The conditional mean scalar dissipation rate is shown to be strongly influenced, especially in the rich case. The conditional mean evaporation rate increases almost linearly with mixture fraction in the lean case, but shows a more complex behavior in the rich case. The probability density functions (PDF) of mixture fraction in spray combustion are shown to be quite complex. To model this behavior, the formulation of the PDF in a transformed mixture fraction space is proposed and demonstrated to predict the DNS data reasonably well.  相似文献   

15.
Direct numerical simulations were performed to study the autoignition process of n-heptane fuel spray in a turbulent field. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel droplets, the Lagrangian method is used. Droplets are initialized at random locations in a two-dimensional isotropic turbulent field. A chemistry mechanism for n-heptane with 44 species and 112 reactions was adopted to describe the chemical reactions. Three cases with the same initial global equivalence ratio (0.5) and different initial gas phase temperatures (1100, 1200, and 1300 K) were simulated. In addition, two cases with initial global equivalence ratios of 1.0 and 1.5 and initial temperature 1300 K were simulated to examine the effect of equivalence ratio. Evolution of temperature, species mass fraction, reaction rate, and the joint PDF of temperature and equivalence ratio are presented. Effects of the initial gas temperature and equivalence ratio on vaporization and ignition are discussed. A correlation was derived relating ignition delay times to temperature and equivalence ratio. It was confirmed that with the increase of initial temperature, the autoignition occurs earlier. With the increase of the initial equivalence ratio, however, autoignition occurs later due to a larger decrease in gas phase temperature caused by fuel droplet evaporation. The results obtained in this study are expected to be constructive in understanding fuel spray combustion, such as that in homogeneous charge compression ignition systems.  相似文献   

16.
Two dimensional numerical simulation of the structure of gaseous detonation is investigated by utilizing the single step Arrhenius kinetic reaction mechanism in both high and low activation energy mixtures, characterized by their irregular and regular detonation structure, respectively. All the computations are performed on a small Beowulf cluster with six nodes. The dependency of the structure on the grid resolution is performed and it is found that, resolution of more than 300 cells per hrl is required to demonstrate the role of hydrodynamic instabilities, (KH and RM instabilities) in detonation propagation in irregular structures, while due to the absence of fine-scale structures, resolution of 50 cells per hrl, gives the physical structure of detonation with regular structures. Results show that the transverse waves in irregular structure are significantly stronger than the transverse wave in regular structure detonation, which can enhance the burning rate of the unburned pockets behind the shock front. Results for resolution of 600 cells per hrl illustrate that, in addition to the primary mode, the interaction of large vortices with the shock front provides secondary modes in the structure which leads to the irregularity of the structure in high activation energy mixture. In contrast with the results obtained for regular structure, which no unburned gas pockets and vortices observed behind the front, the results for irregular structure reveal that most portions of the gases, escape from shock compression and create large unburned gas pockets behind the both weak section of the Mach stem and the incident wave, which will burn eventually by the turbulent mixing due to the vortices associated with hydrodynamic instabilities. Therefore, the ignition mechanism in irregular structure is due to the both shock compression and by turbulent mixing associated with hydrodynamic instabilities, while the shock compression yields the ignition mechanism in regular structure detonation.  相似文献   

17.
爆轰产物中或多或少含有固态碳 ,一相的排平物态方程被推广为两相的之后 ,以某种炸药的一条已知等熵线为参考曲线 ,就可以用来估算其各种初始装药密度下的爆轰参数 .用产物中含碳量较多的TNT的 {D ,ρ0 }实验数据与理论估算值相比较 ,可以对爆轰的ZND理论的假设进行检验 .检验的结果再一次表明 ,爆轰的ZND理论的假设是成立的 ,并且排平物态方程是恰当的爆轰产物的物态方程 .  相似文献   

18.
The yields of muonic x rays of the Lyman series of nitrogen, neon and argon have been analysed to determine capture ratios A(Z1,Z2) in about thirty gaseous mixtures under different experimental conditions. In addition, capture ratios A(Z,H) have been determined in hydrogen mixtures by taking into account transfer processes from muonic hydrogen to elements Z. The influence of the spectral flux density of the muons on capture ratios has been analysed. Our per-atom ratios form a coherent set and confirm the value A(Ar,Ne) = 1. 262(10).  相似文献   

19.
20.
Spontaneous ignition of single n-heptane droplets in a constant volume filled with air is numerically simulated with the spherical symmetry. The volume is closed against mass, species, and energy transfer. The numerical model is fully transient. It continues calculation even after the droplet has completely vaporized, and therefore can predict pre-vaporized ignition. Initial pressure and initial air temperature are fixed at 3 MPa and 773 K, respectively. The droplet is initially at room temperature, and its diameter is between 1 and 100 μm. When the overall equivalence ratio is fixed to be sufficiently large, there exists no ignition limit in terms of initial droplet diameter d0, and the ignition delay takes a minimum value at certain d0. In such a case, transition from the heterogeneous ignition to the homogeneous ignition with decreasing d0 is observed. When d0 is fixed to be so small that the ignition would not occur in an infinite volume of air, the ignition delay takes a minimum value at certain , which is less than unity. Two-stage ignition behavior is investigated with this model. Ignition delay of a cool flame has the dependence on d0 that is similar to that of ignition delay of a hot flame when is unity. When is almost zero, the ignition limit for cool flame in terms of d0 is not identified unlike that for hot flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号