首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combustion of stoichiometric Ethyl-hexyl-nitrate (EHN)-doped n-heptane/oxygen/argon and (EHN)-doped n-heptane/air mixtures, respectively, was investigated in a low-pressure burner with a molecular-beam mass spectrometer and ignition delay-time (τign) measurements were performed in a high-pressure shock tube. The experiments with the low-pressure flame were used for the determination of the flame structure including concentration profiles of reactants, products and important intermediates in the flame. The shock tube experiments provided τign for a temperature range of 690 K ? T ? 1275 K at a pressure of 40 ± 2 bar for stoichiometric and lean mixtures under engine relevant conditions. A chemical mechanism for n-heptane/EHN mixtures was developed from an automatically generated mechanism for n-heptane by manually adding reactions to describe the influence of EHN. This mechanism was validated against the shock-tube data for various temperatures, levels of EHN-doping and equivalence ratios by homogeneous reactor calculations.The ignition delay times predicted by the model agree well with the shock tube results for a large range of temperatures, equivalence ratios and EHN concentrations. The influence of EHN onto ignition delay was largest in the low-temperature regime (770-1000 K).Numerical analysis suggests that the prevalent reason for the ignition-enhancing effect of EHN is the formation of highly reactive heptyl radicals by thermal decomposition of EHN. Due to this comparatively simple and generic mechanism, EHN is expected to have a similar ignition-enhancing effect also for other hydrocarbon fuels.  相似文献   

2.
Detonability limits in thin annular channels   总被引:3,自引:0,他引:3  
In this paper, detonability limits in two-dimensional annular channels are investigated. Since the channel heights are small in comparison to the tube diameter, curvature effects can be neglected and the annular channels can be considered to be essentially two-dimensional. Mixtures that are highly diluted with argon are used since previous investigations seem to indicate that detonations in such mixtures are “stable” in that cellular instabilities play minor roles on the propagation of the detonation. For stable detonations where the ZND structure is valid, boundary layer effects can be modeled as a flow divergence term in the conservation of mass equation following the pioneering work of Fay [J.A. Fay, Phys. Fluids 2(3) (1959) 283–289]. Expansion due to flow divergence in the reaction zone results in a velocity deficit. There exists a maximum deficit when an eigenvalue detonation velocity can no longer be found, which can be taken as the onset of the detonability limits. Experimentally, it was found that unlike “unstable” detonations, the detonability limits for “stable” detonations are well-defined. No unstable near-limit phenomena (e.g., galloping detonations) was observed. Good agreement is found between the theoretical predictions and the experimentally obtained velocity deficits and limits in the two channel heights of 2.2 and 6.9 mm for hydrogen–oxygen and acetylene–oxygen mixtures diluted with over 50% argon. It may be concluded that at least for these special mixtures where the detonation is “stable,” the failure mechanism is due to flow divergence caused by the negative displacement thickness of the boundary layer behind the leading shock front of the detonation wave.  相似文献   

3.
An experimental investigation of the onset of detonation   总被引:2,自引:0,他引:2  
An experimental configuration is devised in the present investigation whereby the condition at the final phase of the deflagration to detonation transition (DDT) process can be generated reproducibly by reflecting a CJ detonation from a perforated plate. The detonation products are transmitted downstream through the plate, generating a turbulent reaction front that mixes with the unburned mixture and that drives a precursor shock ahead of it at a strength of about M = 3. The gasdynamic condition that is generated downstream of the perforated plate closely corresponds to that just prior to the onset of detonation in the DDT process. The turbulence parameters can be controlled by varying the geometry of the perforated plate; thus, the condition leading to the onset of detonation can be experimentally investigated. A one-dimensional theoretical analysis of the steady wave processes was first performed, and the experimental results show good agreement, indicating that the present experimental condition can be theoretically described. Two different detonation tube geometries (one with a square cross-section of 300 mm by 300 mm and the other with a circular cross-section of 150 mm) are used to demonstrate the independence of the tube diameter at the critical condition for DDT. Perforated plates with different hole diameters (d = 8, 15, and 25 mm) were tested, and the hole spacing to hole diameter ratio was maintained at 0.5. Different hydrogen–air mixtures were tested at normal temperature and pressure. For the plate with 8 mm holes, the onset of detonation is never observed. For the plate with 15 mm holes, successful initiation of a detonation is achieved for 0.8 < < 1.75 in both detonation tubes. For the plate with 25 mm holes, detonation initiation is observed for 0.7 < < 2.1 in the square detonation tube and for 0.8 < < 1.6 in the smaller circular detonation tube.  相似文献   

4.
Paper reports a result of experiments of spherical shock waves generated by explosions of micro-explosives weighing from 1 to 10 mg ignited by the irradiation of Q-switched laser beam and direct initiation to a spherical detonation wave in stoichiometric oxygen/hydrogen mixtures at 10–200 kPa. We visualized the interaction of debris particles ejected micro-explosives’ surface with shock waves by using double exposure holographic interferometry and high-speed video recording. Upon explosion, minute inert debris launched supersonically from micro-charge surface precursory to shock waves initiated spherical detonation waves. To examine this effect we attached 0.5–2.0 μm diameter SiO2 particles densely on micro-explosive surfaces and observed that the supersonic particles, significantly promoted the direct initiation of spherical detonation waves. The domain and boundary of detonation wave initiations were experimentally obtained at various initial pressures and the amount of micro-charges.  相似文献   

5.
In this work, oblique detonation of n-heptane/air mixture in high-speed wedge flows is simulated by solving the reactive Euler equations with a two-dimensional (2D) configuration. This is a first attempt to model complicated hydrocarbon fuel oblique detonation waves (ODWs) with a detailed chemistry (44 species and 112 reactions). Effects of freestream equivalence ratios and velocities are considered, and the abrupt and smooth transition from oblique shock to detonation are predicted. Ignition limit, ODW characteristics, and predictability of the transition mode are discussed. Firstly, homogeneous constant-volume ignition calculations are performed for both fuel-lean and stoichiometric mixtures. The results show that the ignition delay generally increases with the wedge angle. However, a negative wedge angle dependence is observed, due to the negative temperature coefficient effects. The wedge angle range for successful ignition of n-heptane/air mixtures decreases when the wedge length is reduced. From two-dimensional simulations of stationary ODWs, the initiation length generally decreases with the freestream equivalence ratio, but the transition length exhibits weakly non-monotonic dependence. Smooth ODW typically occurs for lean conditions (equivalence ratio < 0.4). The interactions between shock/compression waves and chemical reaction inside the induction zone are also studied with the chemical explosive mode analysis. Moreover, the predictability of the shock-to-detonation transition mode is explored through quantifying the relation between ignition delay and chemical excitation time. It is demonstrated that the ignition delay (the elapsed time of the heat release rate, HRR, reaches the maximum) increases, but the excitation time (the time duration from the instant of 5% maximum HRR to that of the maximum) decreases with the freestream equivalence ratio for the three studied oncoming flow velocities. Smaller excitation time corresponds to stronger pressure waves from the ignition location behind the oblique shock. When the ratio of excitation time to ignition delay is high (e.g., > 0.5 for n-C7H16, > 0.3 for C2H2 and > 0.2 for H2, based on the existing data compilation in this work), smooth transition is more likely to occur.  相似文献   

6.
Aspects of the higher-n λ( n) permutational modules associated with Young subgroups of various highly-branched high-n fold algebras, which are pertinent to identical spin NMR clusters, are presented for λ [boxvr] n (or λ [boxvR] n), aRota p-tuple or number partition; the method of optimal choice for deriving the Λ[λ′] Kostka coefficients, found in {[λ′]} sets derived from λ permutational module expansions, rests on the ordering of the λ-(shape) to the self-associated diagram(s) in the dominance hierarchy. Hence, physical insight into these cage-cluster NMR systems is developed both from these properties and from the inter-related induced symmetries of GL(n, ) and n groups. From these associated combinatorial, mapping or scalar invariant aspects of SU(mnn symmetry, one may define the [A]n( n) systems of [AX]n NMR problems in a general semi-topological limit. This corresponds to a high-n n limit in which the individual spin cluster exhibits a lack of any (intracluster) ‘magnetic equivalence’ properties.  相似文献   

7.
Direct initiations and stabilizations of three-dimensional conical detonation waves were attained by launching spheres with 1.06–1.31 times the C–J velocities into detonable mixtures. We conducted high time-resolution Schlieren visualizations of the whole processes over unsteady initiations to stable propagations of the stabilized Oblique Detonation Waves (ODWs) using a high-speed camera. The detonable mixtures were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They were diluted with argon in a 50% volumetric fraction, and a 75% diluted mixture was also tested for the acetylene/oxygen. The direct initiation of detonation by the projectile and the DDT process like the re-initiation appeared in the initiation process of stabilized ODW. This process eventually led to the stabilized ODW supported by the projectile velocity and the ringed shape detonation wave originating in the re-initiation. We modeled the spatial evolution of stabilized ODW after the re-initiation based on its C–J velocity and angle. The model qualitatively reproduced the measured development rate of stabilized ODW. We also discussed about the detonation stability for the curvature effect arising from the three-dimensional nature of stabilized ODW around the projectile. The curvature effect attenuated the detonation wave below its C–J velocity at the vicinity of projectile. The propagation limits of curvature effect will be responsible for the criticality to attain the stabilized ODWs. By accessing the detailed distributions of propagation velocities and curvature radiuses, the critical curvature radiuses normalized by the cell sizes experimentally revealed to be 8–10 or 15–18 for mixtures diluted with each 50% argon or 75% argon/krypton.  相似文献   

8.
Initiation of detonation by conical projectiles   总被引:2,自引:0,他引:2  
Initiation of detonation by a hypersonic conical projectile launched into a combustible gas mixture is investigated. From analytic considerations of the flowfield, energetic and kinetic limits are proposed to predict the conditions required to initiate an oblique detonation wave in the mixture. To experimentally investigate these limits, projectiles with cone half angles varying from 15° to 60° were launched into a stoichiometric mixture of hydrogen/oxygen with 70% argon dilution at initial pressure between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities as great as 2.5 km/s (corresponding to 150% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via schlieren photography. Five combustion regimes could be observed about the projectile ranging from a prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. The two theoretical limits provide a means to interpret the observed flowfield regimes and are in satisfactory agreement with the experimental results.  相似文献   

9.
Spinning detonation and velocity deficit in small diameter tubes   总被引:2,自引:0,他引:2  
Detonation velocities and soot patterns of H2/O2 mixtures were measured in glass tubes of 3, 6 and 10 mm diameters at pressures ranging from 70 to 400 Torr and equivalence ratios of 0.5–1.5. It was confirmed that the transition from a multi-head to a spinning detonation occurred at the pressure where the cell size is equal to the length of circumference. At this transition pressure, the velocity was 95% of the C-J detonation. Stable spinning detonations were observed at wide range of initial pressures below the transition point. Detonation velocities were continuously decreasing with decreasing initial pressures in this pressure region. Spinning detonations with velocities down to 85% of the C-J detonation were observed. Those deficits in detonation velocities were well predicted by the modified ZND model with full detailed chemical kinetics. Heat and momentum losses were taking into account in this model. Validity of the modified ZND model to define the limit of detonation propagation was discussed.  相似文献   

10.
Ignition-delay times were measured in shock-heated gases for a surrogate gasoline fuel comprised of ethanol/iso-octane/n-heptane/toluene at a composition of 40%/37.8%/10.2%/12% by liquid volume with a calculated octane number of 98.8. The experiments were carried out in stoichiometric mixtures in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: Temperatures of 690-1200 K, and pressures of 10, 30 and 50 bar, respectively. Ignition delay times were determined from CH chemiluminescence at 431.5 nm measured at a sidewall location. The experimental results are compared to simulated ignition delay times based on detailed chemical kinetic mechanisms. The main mechanism is based on the primary reference fuels (PRF) model, and sub-mechanisms were incorporated to account for the effect of ethanol and/or toluene. The simulations are also compared to experimental ignition-delay data from the literature for ethanol/iso-octane/n-heptane (20%/62%/18% by liquid volume) and iso-octane/n-heptane/toluene (69%/17%/14% by liquid volume) surrogate fuels. The relative behavior of the ignition delay times of the different surrogates was well predicted, but the simulations overestimate the ignition delay, mostly at low temperatures.  相似文献   

11.
We studied experimentally the shock waves and combustion waves generated by a hypersonic spherical projectile in an explosive mixture. An acetylene/oxygen mixture diluted with argon (2C2H2 + 5O2 + 7Ar) was used with various initial pressures (detonation cell sizes) to observe optically with a shadowgraph imaging system a shock-induced combustion (SIC), a stable oblique detonation wave (ODW), and a wave called a Straw Hat type consisting of a strong SIC and ODW. The criticality of stabilizing an ODW around a projectile is expressed by the ratio of the projectile diameter, d, to the cell size, λ, as d/λ = 3.63–4.84. Although the Straw Hat type wave in the vicinity of criticality is an unstable phenomena, it has been mainly observed by a single frame picture to date, so that it is difficult to discuss the time history of its wave structure. In this study, it was remarkable to directly carry out continuous optical observations using a high speed video camera which can continuously film 100 pictures with a 1 μs frame speed so as to allow an investigation of the sustaining mechanism of the unstable wave structure. Our results allowed the identification of an increase in unsteadiness in the relative distance between the projectile fronts and the transition points to an ODW as the time increased. They also showed local explosions in the SIC region near transition point transformed the ODW front upstream.  相似文献   

12.
Autoignition of surrogate fuels at elevated temperatures and pressures   总被引:2,自引:0,他引:2  
Autoignition of Jet-A and mixtures of benzene, hexane, and decane in air has been studied using a heated shock tube at mean post-shock pressures of 8.5 ± 1 atm within the temperature range of 1000–1700 K with the objective of identifying surrogate fuels for aviation kerosene. The influence of each component on ignition delay time and on critical conditions required for strong ignition of the mixture has been deduced from experimental observations. Correlation equation for Jet-A ignition times has been derived from the measurements. It is found that within the scatter of experimental data dilution of n-decane with benzene and n-hexane leads to slight increase in ignition times at low temperatures and does not change critical temperatures required for direct initiation of detonations in comparison with pure n-decane/air mixtures. Ignition times in 20% hexane/80% decane (HD), 20% benzene/80% decane (BD) and 18.2% benzene/9.1% hexane/72.7% decane (BHD) mixtures at temperature range of T  1450–1750 K correlate well with induction time of Jet-A fuel suggesting that these mixtures could serve as surrogates for aviation kerosene. At the same time, HD, BD and BHD surrogate fuels demonstrate a stronger autoignition and peak velocities of reflected shock front in comparison with Jet-A and n-decane/air mixtures.  相似文献   

13.
Flame propagation in capillary tubes with smooth circular cross-sections and diameters of 0.5, 1.0, and 2.0 mm are investigated using high-speed photography. Flames were found to propagate and accelerate to detonation speed in stoichiometric ethylene and oxygen mixtures initially at room temperature in all three tube diameters. Ignition occurs at the midpoint along the length of the tube. We observe for the first time transition to detonation in micro-tubes. Detonation was observed with both spark and hot-wire ignition. Tubes with larger diameters take longer to transition to detonation. In fact, transition distance scales with the diameter in our 1.0 and 2.0 mm cases with spark ignition. Flame structures are observed for various stages of the process. Three types of flame propagation modes were observed in the 0.5 mm tube with spark ignition: (a) acceleration to Chapman–Jouguet (CJ) detonation speed followed by constant CJ wave propagation, (b) acceleration to CJ speed, followed by the detonation wave failure, and (c) flame acceleration to a constant speed below the CJ speed of approximately 1600 m/s. The current detonation mechanism observed in capillary tubes is applicable to predetonators for pulsed detonation, micro propulsion devices, safety issues, and addresses fundamental issues raised by recent theoretical and numerical analyses.  相似文献   

14.
For the laser designer and other users the optical, electrical and refractive parameters have been obtained for pure nonpolar laser dye solvents m-xylene and dioxane. The refractive index (n) and its thermo-optic constant (dn/dT) at argon laser wavelength 514.5 nm and He–Ne laser wavelength 632.8 nm, are measured. The values of n and dn/dT are used to calculate the optical permittivity ε=n2 and its variation with temperature dε/dT. Applying Cauchy's equation the optical and dielectric dispersion (dn/dλ and dε/dλ) are determined. The variation of −dn/dT, −dε/dT, molar refractivity and thermal volume expansion coefficient as a function of wavelength are calculated and represented. Furthermore Cauchy's constants A and B as a function of temperature are plotted. The specific and molar refractivities, specific and molar dispersivity total polarizability, distortion polarizability, ratio of atomic to electronic polarizability, molecular radius, relaxation time, electric susceptibility characteristic impedance, and other physical parameters were calculated. Additionally, density, thermal linear expansion coefficient and molar polarization as a function of temperature were calculated at the laser wavelengths 514.5 nm.  相似文献   

15.
The detonation characteristics of methane–oxygen mixtures at pre-detonation pressures of 101–1,013 kPa were investigated in a detonation tube. Both pure methane–oxygen mixtures and mixtures with argon dilution were explored. Measurements made include cell sizes via soot foil, wave speed via high speed ion probes / pressure transducers, and temperature / H2O molar concentration profiles via 100 kHz absorption spectroscopy. Measured cell widths agreed with predicted cell widths based on a ZND length correlation. In addition, the power law fit of cell width with pre-detonation pressure agreed with previous data at less than 101 kPa. Measured detonation wave speeds agreed within 3% of Chapmen-Jouguet for all cases. H2O molar density and temperature were successfully captured up to 507 kPa. However, above 507 kPa pre-detonation pressure, low signal to noise ratio and poor spectral fits at the extreme conditions of the von Neumann spike resulted in unacceptable uncertainty. These results provide a unique dataset to validate kinetics models and high-fidelity computation fluid dynamics codes for methane-oxygen detonations at elevated pre-detonation pressures relevant to rotating detonation rocket engines.  相似文献   

16.
The refractive index (n) and thermal coefficient of the refractive index (dn/dt) are measured at four wavelengths for the diethylamine and triethylamine. The measurements are carried out using the Bellingham+Stanley model 60/ED high-accuracy Abbe refractometer. The optical permittivity (ε) and its variation with temperature are calculated. Applying the Cauchy equation, the following refractive properties are obtained: the optical dispersion dn/dλ, the dielectric dispersion dε/dλ, the variation of -dn/dT, dε/dT, as a function of wavelength (λ), and Cauchy's constants against temperature. Additionally, molar refractivity versus temperature and wavelength are determined.  相似文献   

17.
An automated procedure has been previously developed to generate simplified skeletal reaction mechanisms for the combustion of n-heptane/air mixtures at equivalence ratios between 0.5 and 2.0 and different pressures. The algorithm is based on a Computational Singular Perturbation (CSP)-generated database of importance indices computed from homogeneous n-heptane/air ignition solutions. In this paper, we examine the accuracy of these simplified mechanisms when they are used for modeling laminar n-heptane/air premixed flames. The objective is to evaluate the accuracy of the simplified models when transport processes lead to local mixture compositions that are not necessarily part of the comprehensive homogeneous ignition databases. The detailed mechanism was developed by Curran et al. and involves 560 species and 2538 reactions. The smallest skeletal mechanism considered consists of 66 species and 326 reactions. We show that these skeletal mechanisms yield good agreement with the detailed model for premixed n-heptane flames, over a wide range of equivalence ratios and pressures, for global flame properties. They also exhibit good accuracy in predicting certain elements of internal flame structure, especially the profiles of temperature and major chemical species. On the other hand, we find larger errors in the concentrations of many minor/radical species, particularly in the region where low-temperature chemistry plays a significant role. We also observe that the low-temperature chemistry of n-heptane can play an important role at very lean or very rich mixtures, reaching these limits first at high pressure. This has implications to numerical simulations of non-premixed flames where these lean and rich regions occur naturally.  相似文献   

18.
Acceleration and transition to detonation of expanding flame rings ignited at the center of 260 μm and 120 μm gaps between parallel flat pates were experimentally studied. The micro-spacing was initially filled with stoichiometric ethylene/oxygen mixtures at ambient pressure and temperature. Visualizations showed that the outward propagating reaction wave was initially smooth and circular, but petal-like wrinkles quickly developed on the flame ring. Flame wrinkles appeared earlier and closer to the ignition point as the gap width became smaller. The flame underwent fast acceleration during the onset of flame wrinkling, but the acceleration was relatively mild as the wrinkled flame ring continued to expand. Time exponents for the accelerative growth of corrugated flame rings were identical in the two highly confined gaps. The flame ring underwent deflagration-to-detonation transition as the propagation velocities abruptly surged from 1000 m/s to over 2000 m/s. The arc-shaped detonation waves initiated from local explosion spots on the flame ring were propagating at near Chapman–Jouguet velocities. The induction distance and time for detonation transition were both shorter in the smaller gap. Detonation cell patterns and the initiation locations were also clearly recorded through soot film visualizations.  相似文献   

19.
The specific conductance of ammonium formate, ammonium benzoate, sodium formate and sodium benzoate in (10%, 20% and 30% (W/W)) methanol–water, ethanol–water and glycerol–water mixtures at different temperatures (293, 298, 303 and 308 K) was measured.The molar conductance (Λ), limiting molar conductance (Λ0), limiting ionic conductance (λ0), association constants (KA), the activation energy of the transport process (Ea), Walden product (Λ0η0), hydrodynamic radii (1/rs+ + 1/rs)− 1, transfer numbers of the studied ions (t), standard thermodynamic parameters of association (ΔGA, ΔHA and ΔSA) were calculated and discussed.The results show that, the molar conductance and the limiting molar conductance values were decreased as the relative permittivity of the solvent decreased while, the association constant increased. Also the results show that the molar conductance, the limiting molar conductance and the association constant values were increased as the temperature increased indicating that the association process is an endothermic one.  相似文献   

20.
J D Pandey  P Jain  V Vyas 《Pramana》1994,43(5):361-372
Sound velocity and density were measured in six binary liquid mixtures namely,n-heptane+toluene (I);n-heptane+n-hexane (II); toluene+n-hexane (III); cyclohexane+n-heptane (IV); cyclohexane+n-hexane (V), andn-decane+n-hexane (VI) at 298.15 K. The experimental isothermal compressibility has been evaluated from measured values of density and sound velocity. The isothermal compressibility of these mixtures has been calculated theoretically using different models for the hard sphere equation of state and also using Flory’s statistical theory. The computed values of isothermal compressibility were also compared with the experimentally evaluated values. A satisfactory agreement has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号