首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The technique of pulsed laser photolysis coupled to LIF detection of IO was used to study IO + NO(3) --> OIO + NO(2); I + NO(3) --> (products); CH(2)I + O(2) --> (products); and O((3)P) + CH(2)I(2) --> IO + CH(2)I, at ambient temperature. was observed for the first time in the laboratory and a rate coefficient of k(1 a) = (9 +/- 4) x 10(-12) cm(3) molecule(-1) s(-1) obtained. For , a value of k(2) (298 K) = (1.0 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) was obtained, and a IO product yield close to unity determined. IO was also formed in a close-to-unity yield in , whereas in an upper limit of alpha(3)(IO) < 0.12 was derived. The implications of these results for the nighttime chemistry of the atmosphere were discussed. Box model calculations showed that efficient OIO formation in was necessary to explain field observations of large OIO/IO ratios.  相似文献   

2.
The kinetics of the reaction OIO+NO were studied by pulsed laser photolysis/time-resolved cavity ring-down spectroscopy, yielding k(235-320 K)=7.6(+4.0)(-3.1) x 10(-13) exp[(607+/-128)/T] cm3 molecule-1 s-1. Quantum calculations on the OIO+NO potential-energy surface show that the reactants form a weakly bound OIONO intermediate, which then dissociates to the products IO+NO2. Rice-Ramsberger-Kassel-Markus (RRKM) calculations on this surface are in good accord with the experimental result. The most stable potential product, IONO2, cannot form because of the significant rearrangement of OIONO that would be required. The reaction OIO+OH was then investigated by quantum calculations of the relevant stationary points on its potential-energy surface. The very stable HOIO2 molecule can form by direct recombination, but the bimolecular reaction channels to HO2+IO and HOI+O2 are closed because of significant energy barriers. RRKM calculations of the HOIO2 recombination rate coefficient yield krec,0=1.5x10(-27) (T/300 K)(-3.93) cm6 molecule-2 s-1, krec,infinity=5.5x10(-10) exp(46/T) cm3 molecule-1 s-1, and Fc=0.30. The rate coefficients of both reactions are fast enough around 290 K and 1 atm pressure for these reactions to play a potentially important role in the gas phase and aerosol chemistry in the marine boundary layer of the atmosphere.  相似文献   

3.
The reactions of iodine monoxide radical, IO, with alkyl peroxide radicals, RO(2) (R = CH(3), C(2)H(5), and CF(3)), have been studied using cavity ring-down spectroscopy. The rate constant of the reaction of IO with CH(3)O(2) was determined to be (7.0 +/- 3.0) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K and 100 Torr of N(2) diluent. The quoted uncertainty is two standard deviations. No significant pressure dependence of the rate constant was observed at 30-130 Torr total pressure of N(2) diluent. The temperature dependence of the rate constants was also studied at 213-298 K. The upper limit of the branching ratio of OIO radical formation from IO + CH(3)O(2) was estimated to be <0.1. The reaction rate constants of IO + C(2)H(5)O(2) and IO + CF(3)O(2) were determined to be (14 +/- 6) x 10(-11) and (6.3 +/- 2.7) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K, 100 Torr of N(2) diluent, respectively. The upper limit of the reaction rate constant of IO with CH(3)I was <4 x 10(-14) cm(3) molecule(-1) s(-1).  相似文献   

4.
The technique of pulsed laser photolysis was coupled to laser induced fluorescence detection of iodine oxide (IO) to measure rate coefficients, k for the reactions IO + CH(3)O(2)--> products (R1, 30-318 Torr N(2)), IO + CF(3)O(2)--> products (R2, 70-80 Torr N(2)), and IO + O(3)--> OIO + O(2) (R3a). Values of k(1) = (2 +/- 1) x 10(-12) cm(3) molecule(-1) s(-1), k(2) = (3.6 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1), and k(3a) <5 x 10(-16) cm(3) molecule(-1) s(-1) were obtained at T = 298 K. In the course of this work, the product yield of IO from the reaction of CH(3)O(2) with I was determined to be close to zero, whereas CH(3)OOI was formed efficiently at 70 Torr N(2). Similarly, no evidence was found for IO formation in the CF(3)O(2) + I reaction. An estimate of the rate coefficients k(CH(3)O(2) + I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) and k(CH(3)OOI + I) = 1.5 x 10(-10) cm(3) molecule(-1) s(-1) was also obtained. The results on k(1)-k(3) are compared to the limited number of previous investigations and the implications for the chemistry of the marine boundary layer are briefly discussed.  相似文献   

5.
The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. M?ssinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) 相似文献   

6.
Laser-induced fluorescence spectroscopy via excitation of the A2pi(3/2) <-- X2pi(3/2) (2,0) band at 445 nm was used to monitor IO in the presence of NO2 following its generation in the reactions O(3P) + CF3I and O(3P) + I2. Both photolysis of O3 (248 nm) and NO2 (351 nm) were used to initiate the production of IO. The rate coefficients for the thermolecular reaction IO + NO2 + M --> IONO2 + M were measured in air, N2, and O2 over the range P = 18-760 Torr, covering typical tropospheric conditions, and were found to be in the falloff region. No dependence of k1 upon bath gas identity was observed, and in general, the results are in good agreement with recent determinations. Using a Troe broadening factor of F(B) = 0.4, the falloff parameters k0(1) = (9.5 +/- 1.6) x 10(-31) cm6 molecule(-2) s(-1) and k(infinity)(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) were determined at 294 K. The temporal profile of IO at elevated temperatures was used to investigate the thermal stability of the product, IONO2, but no evidence was observed for the regeneration of IO, consistent with recent calculations for the IO-NO2 bond strength being approximately 100 kJ mol(-1). Previous modeling studies of iodine chemistry in the marine boundary layer that utilize values of k1 measured in N2 are hence validated by these results conducted in air. The rate coefficient for the reaction O(3P) + NO2 --> O2 + NO at 294 K and in 100 Torr of air was determined to be k2 = (9.3 +/- 0.9) x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recommended values. All uncertainties are quoted at the 95% confidence limit.  相似文献   

7.
The electronic and geometric structures of the title complexes are studied quantum chemically using ab initio and density functional approaches. Coupled cluster calculations at the scalar relativistic (basis set) level are performed, and the results are corrected for spin-orbit coupling using data from relativistic density functional theory studies. The heats of formation (kJ mol(-1)) at 298 K are found to be: IO3 147.8, INO3 33.1, OIO 110.1, I2O3 64.0, I2O4 111.3, I2O5 33.0, IOIO 141.3, IOOI 179.9 and OI(I)O 157.9. These data are used to draw a number of conclusions regarding three important aspects of iodine chemistry in the marine boundary layer. (i) Although the IO self reaction produces the asymmetric dimer, IOIO, it is unlikely that this species plays a further role in the atmosphere as it is short-lived. (ii) INO3 is sufficiently stable to explain the kinetics of the recombination reaction between IO and NO2, and the reaction between I2 and NO3 to produce I + INO3 is almost certainly the major source of iodine oxides at night. (iii) The higher iodine oxides I2O3 and I2O5 are very stable molecules, by contrast to the OIO dimer, I2O4, which is much less stable but which should still survive long enough in the marine boundary layer to provide a building block for iodine oxide particle formation.  相似文献   

8.
Pulsed laser photolysis combined with transient absorption spectroscopy and resonance fluorescence was used to examine the photolysis of OIO at a number of wavelengths corresponding to absorption bands in its visible spectrum between approximately 530 and 570 nm. Photolysis at 532 nm was found to result in substantial depopulation of the absorbing ground state, enabling an estimate for the absorption cross section of OIO at 610.2 nm of (6 +/- 2) x 10(-18) cm2 molecule(-1) to be obtained. No evidence was found for I atom formation following photolysis of OIO at 532, 562.3, 567.9 and 573.8 nm, enabling an upper limit to the I atom quantum yield of < 0.05 (560-580 nm) and < 0.24 (532 nm) to be established.  相似文献   

9.
The kinetics of the reactions of CH2Br and CH2I radicals with O2 have been studied in direct measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated by pulsed laser photolysis of appropriate precursors at 193 or 248 nm. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of O2 being in large excess over radical concentrations. No buffer gas density dependence was observed for the CH2I + O2 reaction in the range 0.2-15 x 10(17) cm(-3) of He at 298 K. In this same density range the CH2Br + O2 reaction was obtained to be in the third-body and fall-off area. Measured bimolecular rate coefficient of the CH2I + O2 reaction is found to depend on temperature as k(CH2I + O2)=(1.39 +/- 0.01)x 10(-12)(T/300 K)(-1.55 +/- 0.06) cm3 s(-1)(220-450 K). Obtained primary products of this reaction are I atom and IO radical and the yield of I-atom is significant. The rate coefficient and temperature dependence of the CH2Br + O2 reaction in the third-body region is k(CH2Br + O2+ He)=(1.2 +/- 0.2)x 10(-30)(T/300 K)(-4.8 +/- 0.3) cm6 s(-1)(241-363 K), which was obtained by fitting the complete data set simultaneously to a Troe expression with the F(cent) value of 0.4. Estimated overall uncertainties in the measured reaction rate coefficients are about +/-25%.  相似文献   

10.
The infrared and ultraviolet-visible absorption cross sections, effective quantum yield of photolysis, and OH, Cl, and NO3 reaction rate coefficients of CHF2CHO are reported. Relative rate measurements at 298 +/- 2 K and 1013 +/- 10 hPa gave kOH = (1.8 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1) (propane as reference compound), kCl = (1.24 +/- 0.13) x 10(-11) cm3 molecule(-1) s(-1) (ethane as reference compound), and kNO3 = (5.9 +/- 1.7) x 10(-17) cm3 molecule(-1) s(-1) (trans-dichloroethene as reference compound). The photolysis of CHF2CHO has been investigated under pseudonatural tropospheric conditions in the European simulation chamber, Valencia, Spain (EUPHORE), and an effective quantum yield of photolysis equal to 0.30 +/- 0.05 over the wavelength range 290-500 nm has been extracted. The tropospheric lifetime of CHF2CHO is estimated to be around 1 day and is determined by photolysis. The observed photolysis rates of CH3CHO, CHF2CHO, and CF3CHO are discussed on the basis of results from quantum chemical calculations.  相似文献   

11.
The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.  相似文献   

12.
The technique of pulsed laser photolysis was coupled to laser induced fluorescence detection of iodine oxide (IO) to measure rate coefficients, k(1)(T), for the title reaction IO + CH3SCH3 --> products (R1). A value of k1(298 K) = (1.44 +/- 0.15) x 10(-14) cm3 molecule(-1) s(-1) was obtained, independent of bath gas pressure (50 < P((N2 or air))/Torr < 300). The expression k1(T) = (3.2 +/- 1.4)x 10(-13)exp[(-925 +/- 136)/T)] adequately described the data over the range of temperatures (256 < T/K < 341) covered. Uncertainties (2sigma) in the 298 K rate coefficient and the pre-exponential factor include an estimate of systematic error. The conventional Arrhenius behaviour of k1(T) and the lack of pressure dependence are suggestive of an abstraction mechanism, characterised by an energy barrier of E approximately 8 kJ mol(-1). The product yield for production of I-atoms was determined indirectly to be close to unity, indicating that the reaction proceeds via transfer of the O-atom from IO to CH3SCH3 to form CH3S(O)CH3. In general, the values of k1(T) measured in this work indicate that has little impact on the chemistry of the atmosphere.  相似文献   

13.
The pressure dependence of the recombination reaction Cl + FC(O)O + M --> FC(O)OCl + M has been investigated at 296 K. FC(O)O radicals and Cl atoms were generated by laser flash photodissociation of FC(O)OO(O)CF at 193 nm in mixtures with Cl2 and He or SF6 over the total pressure range 8-645 Torr. The measured FC(O)O radical and F atom yields in the photolysis are 0.33 +/- 0.06 and 0.67 +/- 0.06. The reaction lies in the falloff range approaching the high-pressure limit. The extrapolations toward the limiting low- and high-pressure ranges were carried out using a reduced falloff curves formalism, which includes a recent implementation for the strong-collision broadening factors. The resulting values for the low-pressure rate coefficients are (2.2 +/- 0.4) x 10(-28)[He], (4.9 +/- 0.9) x 10(-28)[SF6], (1.9 +/- 0.3) x 10(-28)[Cl2] and (5.9 +/- 1.1) x 10(-28)[FC(O)OO(O)CF] cm3 molecule(-1) s(-1). The derived high-pressure rate coefficient is (4.4 +/- 0.8) x 10(-11) cm3 molecule(-1) s(-1). For the reaction Cl + FC(O)OCl --> Cl2 + FC(O)O a rate coefficient of (1.6 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) was determined. The high-pressure rate coefficient was theoretically interpreted using SACM/CT calculations on an ab initio electronic potential computed at the G3S level of theory. Standard heat of formation values of -99.9 and -102.5 kcal mol(-1) were computed at the G3//B3LYP/6-311++G(3df,3pd) level of theory for cis-FC(O)OCl and trans-FC(O)OCl, respectively. The computed electronic barrier for the conversion between the trans and cis conformers is 8.9 kcal mol(-1). On the basis of the present results, the above reactions are expected to have a negligible impact on stratospheric ozone levels.  相似文献   

14.
The kinetics of the CH2I + NO2, CH2Br + NO2, and CHBrCl + NO2 reactions have been studied at temperatures between 220 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time-resolved measurements to obtain reaction rate coefficients under pseudo-first-order conditions. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (2-6 Torr) and are found to depend on temperature as follows: k(CH2I + NO2) = (2.18 +/- 0.07) x 10(-11) (T / 300 K)(-1.45) (+/- 0.22) cm3 molecule(-1) s(-1) (220-363 K), k(CH2Br + NO2) = (1.76 +/- 0.03) x 10(-11) (T/300 K)(-0.86) (+/- 0.09) cm3 molecule(-1) s(-1) (221-363 K), and k(CHBrCl + NO2) = (8.81 +/- 0.28) x 10(-12) (T/300 K)(-1.55) (+/- 0.34) cm3 molecule(-1) s(-1) (267-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the CH2I + NO2 and CH2Br + NO2 reactions, the observed product is formaldehyde. For the CHBrCl + NO2 reaction, the product observed is CHClO. In addition, I atom and iodonitromethane (CH2INO2) or iodomethyl nitrite (CH2IONO) formations have been detected for the CH2I + NO2 reaction.  相似文献   

15.
The rate constant and product branching ratios for the reaction of the cyanato radical, NCO(X (2)Pi), with the ethyl radical, C(2)H(5)(X (2)A'), have been measured over the pressure range of 0.28 to 0.59 kPa and at a temperature of 293 +/- 2 K. The total rate constant, k(1), increased with pressure, P(kPa), described by k(1) = (1.25 +/- 0.16) x 10(-10) + (4.22 +/- 0.35) x 10(-10)P cm(3) molecule(-1) s(-1). Three product channels were observed that were not pressure dependent: (1a) HNCO + C(2)H(4), k(1a) = (1.1 +/- 0.16) x 10(-10), (1b) HONC + C(2)H(4), k(1b) = (2.9 +/- 1.3) x 10(-11), (1c) HCN + C(2)H(4)O, k(1c) = (8.7 +/- 1.5) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data. The pressure dependence was attributed to a forth channel, (1d), forming recombination products C(2)H(5)NCO and/or C(2)H(5)OCN, with pressure dependence: (1d) k(1d) = (0.090 +/- 1.3) x 10(-11) + (3.91 +/- 0.27) x 10(-10)P cm(3) molecule(-1) s(-1). The radicals were generated by the 248 nm photolysis of ClNCO in an excess of C(2)H(6). Quantitative infrared time-resolved absorption spectrophotometry was used to follow the temporal dependence of the reactants and the appearance of the products. Five species were monitored, HCl, NCO, HCN, HNCO, and C(2)H(4), providing a detailed picture of the chemistry occurring in the system. Other rate constants were also measured: ClNCO + C(2)H(5), k(10) = (2.3 +/- 1.2) x 10(-13) , NCO + C(2)H(6), k(2) = (1.6 +/- 0.11) x 10(-14), NCO + C(4)H(10), k(4) = (5.3 +/- 0.51) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data.  相似文献   

16.
The kinetics of the association reaction of ClO radicals: ClO + ClO + M --> Cl2O2+ M (1), have been investigated as a function of temperature T between 206.0-298.0 K and pressure p between 25-760 Torr using flash photolysis with time-resolved UV absorption spectroscopy. ClO radicals were generated following the photolysis of Br2/Cl2O mixtures in nitrogen diluent gas. Charge coupled device (CCD) detection of time resolved absorptions was used to monitor ClO radicals over a broad wavelength window covering the ClO (A 2Pi<-- X 2Pi) vibronic absorption bands. The high pass filtered ClO absorption cross sections were calibrated as a function of temperature between T = 206.0-320 K, and exhibit a negative temperature dependence. The ClO association kinetics were found to be more rapid than those reported in previous studies, with limiting low and high pressure rate coefficients, in nitrogen bath gas, k0 = (2.78 +/- 0.82) x 10(-32) x (T/300)(-3.99 +/- 0.94) molecule(-2) cm6 s(-1) and k(infinity) = (3.37 +/- 1.67) x 10(-12) x (T/300)(-1.49 +/- 1.81) molecule(-1) cm3 s(-1), respectively, (obtained with the broadening factor F(c) fixed at 0.6). Errors are 2sigma. The pressure dependent ClO association rate coefficients (falloff curves) exhibited some discrepancies at low pressures, with higher than expected rate coefficients on the basis of extrapolation from high pressures (p > 100 Torr). Reanalysis of data excluding kinetic data recorded below p = 100 Torr gave k0 = (2.79 +/- 0.85) x 10(-32) x (T/300)(-3.78 +/- 0.98) molecule(-2) cm6 s(-1) and k(infinity) = (3.44 +/- 1.83)x 10(-12) x (T/300)(-1.73 +/- 1.91) molecule(-1) cm3 s(-1). Potential sources of the low pressure discrepancies are discussed. The expression for k(0) in air bath gas is k0 = (2.62 +/- 0.80) x 10(-32) x (T/300)(-3.78 +/- 0.98) molecule(-2) cm6 s(-1). These results support upward revision of the ClO association rate coefficient recommended for use in stratospheric models, and the stratospheric implications of the results reported here are briefly discussed.  相似文献   

17.
The rate constant for the reaction of the isocyanato radical, NCO(X2Pi) with chlorine atoms, Cl(2P), has been measured at 293 +/- 2 and 345 +/- 3 K to be (6.9 +/- 3.8) x 10(-11) and (4.0 +/- 2.2) x 10(-11) cm3 molecules(-1) s,(-1) respectively, where the uncertainties include both random and systematic errors. The measurements were carried out at pressures of 1.3-6.2 Torr with either Ar or CF4 as the bath gas and were independent of both pressure and nature of the third body. Equal concentrations of NCO and Cl atoms were created by 248 nm photolysis of ClNCO. The reaction was monitored by following the temporal dependence of NCO(X2Pi) using time-resolved infrared absorption spectroscopy on rotational transitions of the NCO(10(1)1) <-- (00(1)0) combination band. The reaction rate constant was determined by using a simple chemical model and minimizing the sum of the residuals between the experimental and computer generated temporal NCO concentration profiles. The reaction Cl + ClNCO --> Cl2 + NCO was found to contribute to the observed NCO. The rate constant for this reaction was found to be (2.4 +/- 1.6) x 10(-13) and (1.9 +/- 1.2) x 10(-13) cm3 molecules(-1) s,(-1) at 293 and 345 K, respectively, where the uncertainties include both random and systematic error.  相似文献   

18.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

19.
Rate coefficients, k1(T), over the temperature range of 210-390 K are reported for the gas-phase reaction OH + HC(O)C(O)H (glyoxal) --> products at pressures between 45 and 300 Torr (He, N2). Rate coefficients were determined under pseudo-first-order conditions in OH using pulsed laser photolysis production of OH radicals coupled with OH detection by laser-induced fluorescence. The rate coefficients obtained were independent of pressure and bath gas. The room-temperature rate coefficient, k1(296 K), was determined to be (9.15 +/- 0.8) x 10-12 cm3 molecule-1 s-1. k1(T) shows a negative temperature dependence with a slight deviation from Arrhenius behavior that is reproduced over the temperature range included in this study by k1(T) = [(6.6 +/- 0.6) x 10-18]T2[exp([820 +/- 30]/T)] cm3 molecule-1 s-1. For atmospheric modeling purposes, a fit to an Arrhenius expression over the temperature range included in this study that is most relevant to the atmosphere, 210-296 K, yields k1(T) = (2.8 +/- 0.7) x 10-12 exp[(340 +/- 50)/T] cm3 molecule-1 s-1 and reproduces the rate coefficient data very well. The quoted uncertainties in k1(T) are at the 95% confidence level (2sigma) and include estimated systematic errors. Comparison of the present results with the single previous determination of k1(296 K) and a discussion of the reaction mechanism and non-Arrhenius temperature dependence are presented.  相似文献   

20.
The uptake of NH3 and the heterogeneous reaction of NH3 + HOBr --> products on ice surfaces at 190 K have been investigated in a flow reactor coupled with a differentially pumped quadrupole mass spectrometer. The uptake coefficient gammat for NH3 was determined to be (3.8 +/- 1.4) x 10(-4) on ice films at 189.8 K, for a partial pressure of NH3 in the range of 7.0 x 10(-7) to 3.8 x 10(-6) torr. The amount of NH3 uptake on the ice film was determined to be >2.9 x 10(15) molecules/cm(2), based on the total ice surface area at 189.2 K. The heterogeneous reaction of NH3 + HOBr on ice surfaces has been studied at 190 K. The reaction probability gammat was determined to be (5.3 +/- 2.2) x 10(-4) and was found to vary insignificantly as HOBr surface coverage changes from 2.1 x 10(13) to 2.1 x 10(14) molecules/cm(2). A reaction pathway is proposed on the basis of experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号