首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The linear stability theory is used to study stability characteristics of laminar condensate film flow down an arbitrarily inclined wall. A critical Reynolds number exists above which disturbances will be amplified. The magnitude of the critical Reynolds number is in all practical situations so small that a laminar gravity-induced condensate film can be expected to be unstable. Several stabilizing effects are acting on the film flow; at an inclined wall these effects are due to surface tension, gravity and condensation mass transfer.
Zusammenfassung Mit Hilfe der linearen Stabilitätstheorie werden die Stabilitätseigenschaften laminarer Kondensatfilme an einer geneigten Wand untersucht. Es zeigt sich, daß Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einfluß von Oberflächenspannung, Schwerkraft und Stoffübertragung durch Kondensation bewkkt jedoch, daß Störungen in bestimmten Wellenlängenbereichen gedämpft werden.

Nomenclature c=c*/u0 complex wave velocity, celerity, dimensionless - c*=c r * + i c i * complex wave velocity, celerity, dimensional - cp specific heat at constant pressure - g gravitational acceleration - hfg latent heat - k thermal conductivity of liquid - p* pressure - p=p*/u0 2 dimensionless pressure - Pe=Pr Re* Peclet number - Pr Prandtl number - Re*=u0 / Reynolds number (defined with surface velocity) - S temperature perturbation amplitude - t* time - t=t* u0/ dimensionless time - T temperature - Ts saturation temperature - Tw wall temperature - T=Ts-Tw temperature drop across liquid film - u*, v* velocity components - u=u*/u0 dimensionless velocity components - v=v*/u0 dimensionless velocity components - u0 surface velocity of undisturbed film flow - v g * vapor velocity - x*, y* coordinates - x=x*/ dimensionless coordinates - y=y*/ dimensionless coordinates Greek Symbols =* wave number, dimensionless - *=2 /* wave number dimensional - * wave length, dimensional - =*/ wave length, dimensionless - local thickness of undisturbed condensate film - kinematic viscosity, liquid - density, liquid - g density vapor - surface tension - = (1 +) film thickness of disturbed film, Fig. 1 - stream function perturbation amplitude - angle of inclination Base flow quantities are denoted by, disturbance quantities are denoted by.  相似文献   

2.
Based on the free volume concept and the equation by Doolittle, an empirical equation is offered for the flow activation energy, E *, for polymer melts for the range of over 150°C above glass transition temperature, T g. This E * represents the temperature coefficient of viscosity for the Newtonian region which is also equal to the value measured at constant shear stress for non-Newtonian flow. Data show that the E * of linear polymers approaches a constant value for a temperature range above T g+150°C. Data on 17 polymers are correlated. The proposed equation for this region predicts the E * of polymer melts from the volume expansion coefficient, l, above T g and also from the T g.Correlations have also been developed between E * and l and between E * and T g by simplifying the equation by use of the Simha-Boyer expression. A polymer having a lower l or higher T g generally has a higher E *. However, more satisfactory results are obtained by calculating E * from both l and T g. The E * calculated is found to agree with measurements within the experimental precision of about ±1 Kcal/mole.The effects of polymer composition, molecular weight, branching and microstructure on E * are also discussed. These factors influence E * in the way in which they effect l and T g.  相似文献   

3.
The linear stability theory is used to study stability characteristics of laminar gravity-induced condensate film flow down an arbitrarily inclined wall. The coupled equations describing the velocity and temperature disturbances are solved numerically. The results show that laminar condensate films are unstable in all practical situations. Several stabilizing effects are acting on the film flow; these are: the angle of inclination, the surface tension at large wave numbers, the condensation rate at small Reynolds numbers, and to a certain extent the Prandtl number. For a vertical plate, the expected wavelengths of the disturbances are presented as functions of the Reynolds numbers of the condensate flow.
Zusammenfassung Mit Hilfe der linearen StabilitÄtstheorie werden die StabilitÄtseigenschaften laminarer Kondensatfilme an ebenen WÄnden untersucht. Die Gleichungssysteme, die Temperatur- und Geschwindigkeitsstörungen beschreiben, werden numerisch gelöst. Es zeigt sich, da\ Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einflu\ von OberflÄchenspannung, Schwerkraft und Stoffübertragung durch Kondensation werden diskutiert. Für eine senkrechte Wand werden die zu erwartenden WellenlÄngen der Störungen als Funktion der Reynoldszahlen des Kondensatfilms angegeben.

Abrreviations

Nomenclature C*=C r * + iC i * dimensional complex wave velocity - C=C*/u0 dimensionless wave velocity - cp specific heat at constant pressure - g gravitational acceleration - hn defined by Eq. (16) - hfg latent heat - k thermal conductivity - Pe=PrRe Peclet number - Pr Prandtl number - Py defined by Eq. (15) - q iaPe - Re=u0 Reynolds number - S temperature disturbance amplitude - t* dimensional time - t=t* u0/ dimensionless time - T dimensional temperature - Ts saturation temperature - Tw wall temperature - T =Ts–Tw temperature drop across liquid film - u*, v* dimensional velocity component - v=v*/u0 dimensionless velocity components - u0 dimensional surface velocity of undisturbed film flow - x*, y* dimensional coordinates - x=x*/ dimensionless coordmates - Yn functional vector defined by Eq. (20) Greek Symbols dimensionless wave number - roots of Eq. (20) - n defined by Eq. (21) - local thickness of undisturbed condensate film - * wavelength, dimensional - wavelength, dimensionless - temperature variable - kinematic viscosity of liquid - liquid density - g vapor density - surface tension - stream function disturbance amplitude - stream function - angle of inclination  相似文献   

4.
Harris  S.D.  Ingham  D.B.  Pop  I. 《Transport in Porous Media》2002,46(1):1-18
In this paper we analyse how the presence of the thermal capacity of a vertical flat plate of finite thickness, which is embedded in a porous medium affects the transient free convection boundary-layer flow. At the time t = 0, the plate is suddenly loaded internally with a constant heat flux rate q, so that a transient boundary-layer flow is initiated adjacent to the plate. Initially, the transient effects due to the imposition of the uniform heat flux rate at the plate are confined to a thin fluid region near to the surface and are described by a small time solution. These effects continue to penetrate outwards and eventually evolve into a new steady state flow. Analytical solutions have been derived for these transient (small time) and steady state (large time) flow regimes, which are then matched by a numerical solution of the full boundary-layer equations. It has been found that the non-dimensional fluid temperature (or fluid velocity) profiles are reduced when the thermal capacity effects, described by a parameter Q *, are reduced. For small values of Q *, the approach of these profiles to their steady state values is monotonic. However, for large values of Q *, the temperature profiles are observed to locally exceed (pass through a maximum value) the final steady state values at certain distances from the plate. In general, the maxima in the temperature profiles increase in size as Q * increases and the time taken to approach the steady state solutions increases significantly.  相似文献   

5.
The rheological properties of rennet-induced skim milk gels were determined by two methods, i.e., via stress relaxation and dynamic tests. The stress relaxation modulusG c (t) was calculated from the dynamic moduliG andG by using a simple approximation formula and by means of a more complex procedure, via calculation of the relaxation spectrum. Either calculation method gave the same results forG c (t). The magnitude of the relaxation modulus obtained from the stress relaxation experiments was 10% to 20% lower than that calculated from the dynamic tests.Rennet-induced skim milk gels did not show an equilibrium modulus. An increase in temperature in the range from 20° to 35 °C resulted in lower moduli at a given time scale and faster relaxation. Dynamic measurements were also performed on acid-induced skim milk gels at various temperatures andG c (t) was calculated. The moduli of the acid-induced gels were higher than those of the rennet-induced gels and a kind of permanent network seemed to exist, also at higher temperatures. G storage shear modulus,N·m–2; - G loss shear modulus,N·m–2; - G c calculated storage shear modulus,N·m–2; - G c calculated loss shear modulus,N·m–2; - G e equilibrium shear modulus,N·m–2; - G ec calculated equilibrium shear modulus,N·m–2; - G(t) relaxation shear modulus,N·m–2; - G c (t) calculated relaxation shear modulus,N·m–2; - G *(t) pseudo relaxation shear modulus,N·m–2; - H relaxation spectrum,N·m–2; - t time,s; - relaxation time,s; - angular frequency, rad·s–1. Partly presented at the Conference on Rheology of Food, Pharmaceutical and Biological Materials, Warwick, UK, September 13–15, 1989 [33].  相似文献   

6.
To investigate the viscoelastic behavior of fluid dispersions under steady shear flow conditions, an apparatus for parallel superimposed oscillations has been constructed which consists of a rotating cup containing the liquid under investigation in which a torsional pendulum is immersed. By measuring the resonance frequency and bandwidth of the resonator in both liquid and in air, the frequency and steady-shear-rate-dependent complex shear modulus can be obtained. By exchange of the resonator lumps it is possible to use the instrument at four different frequencies: 85, 284, 740, and 2440 Hz while the steady shear rate can be varied from 1 to 55 s–1. After treatment of the theoretical background, design, and measuring procedure, the calibration with a number of Newtonian liquids is described and the accuracy of the instrument is discussed.Notation a radius of the lump - A geometrical constant - b inner radius of the sample holder - c constant - C 1, C 2 apparatus constants - D damping of the pendulum - e x , e y , e z Cartesian basis - e r , e , e z orthonormal cylindrical basis - E geometrical constant - E t , 0 E t , t relative strain tensor - f function of shear rate - F t relative deformation tensor - G (t) memory function - G * complex shear modulus - G Re(G * ) - G Im(G * ) - h distance between plates - H * transfer function - , functional - i imaginary unit: i 2= – 1 - I moment of inertia - J exc excitation current - J 0 amplitude of J exc - k * = kik complex wave number - K torsional constant - K fourth order tensor - l length of the lump - L mutual inductance - M dr driving torque - M liq torque exerted by the liquid - 0 M liq, liq steady state and dynamic part of Mliq - n power of the shear rate - p isotropic pressure - Q quality factor - r radial position - R,R 0, R c Re(Z *, Z 0 * , Z c * ) - s time - t, t time - T temperature - T, 0 T, stress tensor - u velocity - U lock-in output - 0 velocity - V det detector output voltage - V sig, V cr signal and cross-talk part of V det - x Cartesian coordinate - X , X 0, X c Im(Z *, Z 0 * , Z c * ) - y Cartesian coordinate - z Cartesian coordinate, axial position  相似文献   

7.
An expression of the relaxation function of linear polydisperse polymers is proposed in terms of intermolecular couplings of reptative chains. The relaxation times of each molecular weight are assumed to be shifted according to a tube renewal mechanism accounting for the diffusion of the surrounding chains. The subsequent shift is applied to the relaxation function of each molecular weight obtained from an analytical expression of the complex compliance J *(). Therefore the complex shear modulus G *() is derived from the overall relaxation function using the probability density accounting for the molecular weight distribution and four species-dependent parameters: a front factor A for zero-shear viscosity, plateau modulus G N 0 , activation energy E and characteristic temperature T . All the main features of the theology of polydisperse polymers are described by the proposed model.  相似文献   

8.
When the flow behaviour of fluids is investigated with capillary-or rotational rheometers, adhesion of the fluid to the wall is normally one of the boundary conditions. For many fluids, especially for suspensions, this assumption is not valid. These fluids tend to slip at the wall. Therefore the normal evaluation of rheometer measurements leads to apparent but not compatible flow functions. The flow behaviour of these fluids can be characterized with two material functions which describe separately slipping in the boundary layer and shearing within the fluid. Only if both functions are known, correct predictions of flow processes are possible. A simple equipment to separate the shear function and the slip function is described.List of symbols Y* apparent shear rate - Y w * apparent wall shear rate - Yw wall shear rate corrected with Rabinowitsch and Weissenberg correction - Ys reduced shear rate (slip corrected) - Yws reduced wall shear rate (slip corrected) - * (r) velocity distribution in a capillary - G slip velocity (at the wall) - * (r) velocity distribution in a capillary (without slip) - shear stress - w wall shear stress - VS total volume rate - VG shear volume rate - VG slip volume rate - p 1 pressure in the reservoir channel of the capillary rheometer - p 0 athmospheric pressure - L capillary length - R capillary radius  相似文献   

9.
Shear softening and thixotropic properties of wheat flour doughs are demonstrated in dynamic testing with a constant stress rheometer. This behaviour appears beyond the strictly linear domain (strain amplitude 0 0.2%),G,G and |*| decreasing with 0, the strain response to a sine stress wave yet retaining a sinusoidal shape. It is also shown thatG recovers progressively in function of rest time. In this domain, as well as in the strictly linear domain, the Cox-Merz rule did not apply but() and | *())| may be superimposed by using a shift factor, its value decreasing in the former domain when 0 increases. Beyond a strain amplitude of about 10–20%, the strain response is progressively distorted and the shear softening effects become irreversible following rest.  相似文献   

10.
Unlike the phases of ordinary fluids, solid phases are often found to occur in metastable equilibrium. At constant temperature, a stress-extension test on a bar made of a material which allows the co-existence of two phases will often produce a large hysterysis loop. It is then impossible, by static measurements alone, to determine the values of stress ** and temperature * at which the two phases have the same specific free energy. I show that by a measurement of the jump in temperature across a propagating phase boundary, (*, *) can be determined in several cases of interest.The analysis offers insight into the general behavior of propagating phase boundaries as well as the thermodynamics of solid phases.The discussion is centered around the so-called shape-memory alloys.  相似文献   

11.
The purpose of this present work is to compute the transport properties namely, viscosity, thermal conductivity and diffusion of a mixture composed of three gases; hydrogen, oxygen and argon at different percentages. The percentages are varied from 2.5 %H2+2.5 %O2+95 %Ar to 25 %H2+25 %O2+50 %Ar. A computer programme has been developed to compute these transport properties. The computations are based on Chapman-Enskog expansion. The temperature ranges used in the present course of study were 4000 K, i.e. complete dissociation of both hydrogen and oxygen, and up to 10,000 K. The results are presented in tabular and also in graphical forms.
Transportgrößen für Gemische aus Wasserstoff, Sauerstoff und Argon bei hohen Temperaturen
Zusammenfassung In der vorliegenden Arbeit werden die Transportgrößen Viskosität, Wärmeleitfähigkeit und Diffusionskoeffizient für das ternäre Gasgemisch Wasserstoff-Sauerstoff-Argon bei verschiedenen Zusammensetzungen berechnet, und zwar von 2,5% H2+2,5 % O2+95%Ar bis 25% H2+25% O2+50% Ar. Zur Berechnung dieser Transportgrößen wurde ein Computerprogramm aufgestellt auf der Grundlage der Chapman-Enskog-Entwicklung. Die Temperaturen reichen von 4000 Kelvin, also der vollständigen Dissoziation von Wasserstoff und Sauerstoff, bis zu 10.000 Kelvin. Die Ergebnisse sind graphisch und tabellarisch wiedergegeben.

Nomenclature R0 Universal gas constant - D12 Diffusion coefficient (m2/sec) - Gik Defined as in Eq. (4) - K Thermal conductivity - M Molecular or atomic weight - T absolute temperature in K - T12 * Reduced temperature - P pressure in bars - X mole fraction - CP Specific heat at constant pressure - Collision diameter0A - (2,2)* Collision integral - Coefficient of viscosity. Kg/m sec - (1,1)* Collision integral  相似文献   

12.
A. Zosel 《Rheologica Acta》1972,11(2):229-237
Zusammenfassung Mit Hilfe eines Schwingungsviskosimeters mit konzentrischen Zylindern wurde der komplexe SchubmodulG +iG von ABS-Polymeren bei Frequenzen zwischen 10–3 und 50 Hz und Temperaturen zwischen 130 und 250 °C gemessen. Bei hohen Frequenzen ergeben sich keine wesentlichen Unterschiede im Verlauf der Modulkurven, verglichen mit homogenen Schmelzen. Das viskoelastische Verhalten wird hier vor allem durch das Verschlaufungsnetzwerk der kohärenten Phase bestimmt. Bei tiefen Frequenzen verhalten sich ABS-Polymere in der Schmelze dagegen ähnlich wie vernetzte Kautschuke:G wird frequenzunabhängig, steigt proportional zu ·T an und nimmt wesentlich größere Werte an alsG. Es überwiegen also die elastischen Eigenschaften, während die Schmelzen homogener Polymerer bei tiefen Frequenzen vorwiegend viskos sind. Dieses gummielastische Verhalten ist um so ausgeprägter, je höher der Kautschukgehalt, der Pfropfungsgrad der Kautschukteilchen und, bei gleichem Kautschukgehalt, die Teilchenzahl ist.AusG und G läßt sich die komplexe Schwingungsviskosität * berechnen, deren Betrag ¦*¦ bei vielen Kunststoffschmelzen mit der Viskositätsfunktion () bei stationären Scherströmungen übereinstimmt. Bei ABS-Polymeren wird ¦*¦ bei tiefen Frequenzen nicht konstant, sondern steigt mit abnehmender Frequenz stark an. Es existiert also offensichtlich keine konstante Nullviskosität 0 wie bei homogenen Schmelzen.Ein ähnliches viskoelastisches Verhalten wie ABS-Polymere, wenn auch schwächer ausgeprägt, zeigen Kunststoffe mit anorganischen Füllstoffen wie TiO2.
Summary The complex shear moduliG +iG of ABS-polymers were measured by means of a dynamic viscometer with concentric cylinders at frequencies between 10–3 and 50 cps and temperatures between 130 and 250 °C. At high frequencies there are no remarkable differences in the shape of the modulus curves compared with homogeneous melts. The viscoelastic behaviour is here mainly determined by the entanglement network of the coherent phase.At low frequencies molten ABS-Polymers behave like crosslinked rubbers:G becomes independent of frequency, is proportional to ·T and has much greater values thanG. That means that the elastic properties are prevailing, whereas the melts of homogeneous polymers are mainly viscous at low frequencies. This rubberlike behaviour is the more marked, the higher the rubber contents, the degree of grafting of the rubber particles and, with equal rubber contents, the number of particles.FromG andG the complex dynamic viscosity * can be evaluated. For many polymer melts the absolute value ¦*¦ corresponds to the steady-state viscosity (). For ABS-polymers ¦*¦ does not become constant at low frequencies but rises to much higher values with decreasing frequency. Obviously there is no constant zero — shear viscosity as there is for homogeneous melts.A similar viscoelastic behaviour as shown by ABS-polymers, though less marked, is shown by plastics with anorganic fillers like TiO2.


Den Herren Dr.Haaf, Dr.Heinz und Dr.Stein danke ich für die Herstellung der Proben.  相似文献   

13.
Zusammenfassung Der Wärmeübergang bei laminarer Rohrströmung läßt sich für viele Rand- und Anfangsbedingungen sowie temperaturabhängige Stoffwerte durch eine numerische Integration der Differentialgleichungen für das Geschwindigkeits-und Temperaturfeld berechnen. Die Ergebnisse solcher Rechnungen werden für die ausgebildete und für die nicht ausgebildete Strömung inkompressibler Fluide mitgeteilt. Sie lassen sich bei der thermischen Randbedingung einer konstanten Wandtemperatur in einer Gleichung für die mittlere Flüssigkeitstemperatur darstellen. Bei einer konstanten Wärmestromdichte an der Wand ist der Verlauf der Wandtemperatur von Bedeutung; er wird für die beiden Einlaufbedingungen der Rohrströmung angegeben.
The heat transfer of laminar flow in circular tubes can be calculated for many boundary and initial conditions and temperature dependent properties of the fluid by a numerical integration of the differential equations of the velocity and temperature field. The results of those calculations are given for the developed and for the not developed flow of incompressible fluids. Under the boundary condition of a constant wall temperature they can be represented in an equation for the mean bulk temperature. For a constant heat flux at the wall, the course of the wall temperature is significant; it is given for both inlet-conditions of the laminar flow.

Bezeichnungen a*1 Stoffwertkoeffizient des Viskositätsgesetzes Gl. (5) - b* Stoffwertkoeffizient des Viskositätsgesetzes Gl. (5) - c p * spez. Wärmekapazität - c p dimensionslose spez. Wärmekapazität nach Gl. (3) - D* Rohrdurchmesser - * Enthalpiestrom - i* spez. Enthalpie - K Korrekturfaktor für den Einfluß der temperaturabhängigen Stoffwerte auf den Wärmeübergang bei konstanter Wandtemperatur nach Gl. (29) - k* Stoffwertkoeffizient des Viskositätsgesetzes Gl. (5) - m-A002A Massenstrom - N u mittlere Nusselt-Zahl nach Gl. (17) - P r Prandtl-Zahl,P r=c p * */* - Q-A002A Wärmestrom - q-A002A Wärmestromdichte - R* Rohrradius - R e Reynolds-Zahl,R e=u**R*/* - r* radiale Koordinate - r dimensionslose radiale Koordinate nach Gl. (1) - T* absolute Temperatur - t* Temperatur - t q * reduzierte Wärmestromdichte nach Gl. (20a) - u* Geschwindigkeit in axialer Richtung - u dimensionslose Geschwindigkeit in axialer Richtung nach Gl. (2) - z* Koordinate in axialer Richtung - z dimensionslose Koordinate in axialer Richtung nach Gl. (1) - 007A-0304; Kennzahl für den Wärmeübergang nach Gl. (21) - * mittlere Wärmeübergangszahl - relative Abweichung der mittleren Flüssigkeitstemperatur bei temperaturabhängigen Stoffwerten von der bei konstanten Stoffwerten - Kennzahl für den Einfluß der Temperaturabhängigkeit der Viskosität auf den Wärmeübergang nach Gl. (26) - * dynamische Viskosität - dimensionslose dynamische Viskosität nach Gl. (3) - dimensionslose Temperatur nach Gl. (4) - dimensionslose mittlere Flüssigkeitstemperatur als Kennzahl für den Wärmeübergang bei konstanter Wandtemperatur nach Gl. (19) - * Wärmeleitfähigkeit - dimensionslose Wärmeleitfähigkeit nach Gl. (3) - * Dichte Indizes D auf den Rohrdurchmesser bezogen - m mittlere ... - W an der Rohrwand - 0 auf den Rohreintrittsquerschnitt oder den Beginn des Wärmeübergangs bezogen Teil der von der Fakultät für Maschinenwesen der Technischen Hochschule Braunschweig genehmigten Dissertation des Verfassers. Vorgetragen auf der internen Arbeitssitzung des Fachausschusses Wärme- und Stoffübertragung der Verfahrenstechnischen Gesellschaft im VDI in Freudenstadt am 17. 4. 1967.  相似文献   

14.
Summary A comparative study was made of the large deformation and rupture properties of doughs from a medium strength and a weak wheat flour. Experiments were made by stretching, at a uniform rate, dough rings immersed in a liquid of matching density to prevent the rings from deforming under their own weight. Data were obtained on doughs differing in water content at temperatures from 5 to 45 °C and extension rates from 0.132 to 52.6 inches per minute.Essentially, the tensile properties of each dough could be represented by four characteristic functions, each dependent on only one of the variables: strain, time, temperature, and water content. The strain function (), equaled (In)/, where is the extension ratio, for extensions up to about 90% and, in some instances, up to nearly 200%. Thus, over extended ranges of strain, isochronal stress-strain data (representing comparable states of stress relaxation) gave a direct proportionality between true stress and theHencky strain, H=In; the proportionality constant is the constant strain rate modulus,F (t*), evaluated at the (isochronal) timet *. The modulusF(t,T,W — a function of timet, temperatureT, and water absorptionW-equals (T/T 0)F (t *,T 0,W 0) (t/t * a T a W)n, wheren is a negative constant characteristic of the flour,F (t *,T 0,W 0) is the modulus at timet * at the reference temperatureT 0 for a dough having the reference water absorptionW 0;a T anda W are shift factors that account for the change of relaxation times with temperature and water content. The factor ay obeyed theArrhenius equation and gave activation energies of about 7.7 and 22.8 kcal for doughs from the medium strength and weak flour, respectively. Rupture data obtained at different temperatures and extension rates were superposed by usinga T data and also were represented by failure envelopes. The shift factora W appears to depend somewhat on temperature, especially for the weaker flour.Differences in the rheological behavior of doughs from the two flours were evident in: (1) the range over which the isochronal stress-strain behavior could be linearized; (2) the magnitude of the characteristic exponentn; (3) the magnitude and the temperature dependence of the moduli; (4) the activation energies; (5) the effect of temperature ona W; and (6) several characterizing plots prepared to represent rupture data.
Zusammenfassung Es wurde eine Vergleichsuntersuchung betreffend große Verformungen und Brucheigenschaften von Teigen aus zwei Weizenmehltypen durchgeführt. Die Versuche wurden in der Weise ausgeführt, daß man Teigringe, die in eine Flüssigkeit von entsprechender Dichte eingetaucht waren, um zu verhindern, daß sich die Ringe unter der Wirkung ihres eigenen Gewichtes verformten, mit gleichbleibender Geschwindigkeit streckte. Es wurden Werte für verschiedene Teige ermittelt, die sich durch ihren Wassergehalt unterschieden, und zwar bei Temperaturen von 5–45 °C und Dehnungsgeschwindigkeiten von 0,132–52,6 Zoll pro Minute.Die Zugeigenschaften eines jeden Teiges konnten im wesentlichen durch vier charakteristische Funktionen dargestellt werden, von denen jede lediglich von einer der Veränderlichen: Verformung, Zeit, Temperatur und Wassergehalt abhing. Die Verformungsfunktion () war gleich (In)/, worin das Dehnungsverhältnis bedeutet, und zwar für Dehnungen bis zu ungefähr 90%, in einigen Fällen sogar bis zu fast 200%. Somit ergab sich über einem ausgedehnten Verformungsbereich für die isochronen Kraft-Dehnungs-Werte (die vergleichbare Zustände der Spannungsrelaxation darstellen) eine direkte Proportionalität zwischen wahrer Spannung undHencky- Verformung, H=In; die Proportionalitätskonstante ist der ModulF (t*), genommen bei konstanter Verformungsgeschwindigkeit und der (isochronen) Zeit t*. Der ModulF (t, T, W)eine Funktion der Zeitt, der TemperaturT und der WasserabsorptionW — läßt sich darstellen durch (T/T 0)F (t *,T 0,W 0 ) (t/t * a T a W)n, worinn eine für das Mehl charakteristische negative Konstante undF (t *,T 0,W 0) der Modul zur Zeitt * bei der BezugstemperaturT 0 ist für einen Teig, der die Bezugs-WasserabsorptionW 0 hat;a T unda W sind Verschiebungsfaktoren, die der Veränderung der Relaxationszeiten mit der Temperatur und dem Wassergehalt Rechnung tragen. Der Faktor ay gehorcht derArrhenius-Gleichung und ergibt Aktivierungsenergien von ungefähr 7,7 bzw. 22,8 kcal für die Teige der beiden Mehltypen. Bruchwerte, die bei verschiedenen Temperaturen und verschiedenen Dehnungsgeschwindigkeiten erhalten wurden, ließen sich durch Verwendung vona T-Daten überlagern und durch eine Brucheinhüllende (failure envelope) darstellen. Der Verschiebungsfaktora W scheint etwas von der Temperatur abzuhängen, und zwar besonders bei dem schwächeren Mehl.Unterschiede im rheologischen Verhalten von Teigen aus den beiden Mehlsorten bestanden offensichtlich in Bezug auf: (1) den Bereich, über den das isochrone Kraft-Dehnungs-Verhalten linearisiert werden konnte, (2) die Größe des charakteristischen Exponentenn, (3) die Größe und die Temperaturabhängigkeit der Moduln, (4) die Aktivierungsenergien, (5) die Wirkung der Temperatur aufa W und (6) einige graphische Darstellungen zur Charakterisierung der Bruchwerte.
  相似文献   

15.
The temperature distribution in a semi-infinite insulated cylinder with linear temperature dependent heat conductivity and with arbitrary initial temperature subjects at its base to an azimuthal symmetric arbitrary heat flux is found.This is done in two stages: first the problem is solved by assuming a constant initial temperature and constant thermal properties and then the solution is extended to the case in which the heat conductivity varies linearly with temperature provided that the diffusivity is constant and the initial temperature is an arbitrary function. Several particular cases are then checked and found to be in agreement with known solutions.Because of the complexity of the above mentioned solution a more simple solution is developed which corresponds to the case in which the cylinder base can be considered as semi-infinite. Then, the case in which the heat flux has the form (A exp [–r 2/r 0 2 ]+G) sin t is considered. Two particular cases are considered correspond to narrow and wide beams of heat flux density. In each case the time of maximum temperature and the maximum temperature at the base centre is found.  相似文献   

16.
On the critical exponent for reaction-diffusion equations   总被引:2,自引:0,他引:2  
In this paper we study the initial-boundary value problem for u t =u+ h(t) u p with homogeneous Dirichlet boundary conditions, where h(t)t q for large t. Let s * sup {s ¦ positive solutions w of u t =u such that . Then for p * 1+(q+1)/s * we show: If p>p *, there are global positive solutions that decay to zero uniformly for t. If 1<p<p *, then all nontrivial solutions blow up in finite time. We determine p * for some conical domains in R 2 and R 3.A similar result is derived for a bounded domain if h(t)e t for large t.  相似文献   

17.
To quantitatively analyze the macroscopic properties of the flow in porous media by means of the continuum approach, detailed information (velocity and pressure fields) on the microscopic scale is necessary. In this paper, the numerical solution for incompressible, Newtonian flow in a diverging-converging representative unit cell (RUC) is presented. A new solution procedure for the problem is introduced. A review of the accuracy of the computational method is given.Nomenclature A ff * area of entrance and exit of RUC - A fs * interfacial area between the fluid and solid phases - d throat diameter of RUC (m) - D pore diameter of RUC (m) - i, j unit vector for RUC - L * wave length of a unit cell - L p pore length of RUC (m) - L t throat length of RUC (m) - n unit outwardly directed vector for the fluid phase - p * fluid pressure - * cross-sectional mean pressure - en * entrance cross-sectional mean pressure - Re d Reynolds number - x *, r* cylindrical coordinates - u *, v* velocity - u cl * centerline velocity - d mean velocity at the throat of RUC (m/s) - D mean velocity at the large segment of RUC (m/s) Greek viscosity coefficient (Ns/m2) - p excess momentum loss factor defined in (4.1) - fluid density (kg/m3) - * stream function - * vorticity - dimensionless circulation defined in (2.7) Symbols - the mean value - * dimensionless quantities  相似文献   

18.
Summary The viscoelastic properties of 65/35 styrenen-butyl methacrylate random copolymers were determined using the Eccentric Rotating Disks device of the Rheometrics Mechanical Spectrometer. Similar to the behavior observed in homopolymers, an increase in the molecular weight of the copolymer resulted in extension of the rubbery plateau and in a reduction in the terminal region. The dynamic complex viscosity showed onset of non-Newtonian flow at higher frequencies, with the non-Newtonian region increasing with increasing molecular weight.The elastic modulus,G, was dependent upon the frequency,, asG 1.5 in the terminal region, rather than asG 2 observed for polystyrene. The viscous modulus,G, was proportional to the frequency,, asG , similar to what is observed for polystyrene. The dynamic viscosity | *| at high frequencies showed a region independent of molecular weight where a power law of | *| 0.9 is applicable, consistent with entanglement models. Thy dynamic viscosity at low frequencies in the Newtonian region is related to molecular weight as |*| . Using WLF equations, the coefficient of expansion, f , was obtained that, together with glass transition, showed a negative deviation from the Fox-Flory relationship.
Zusammenfassung Die viskoelastischen Eigenschaften von statistischen 65/35-Styrol/n-Butyl-Methacrylat-Kopolymeren wurden mit Hilfe einer Maxwell-Rheometer-Anordnung in Verbindung mit dem Mechanischen Spektrometer der Fa. Rheometrics bestimmt. Ähnlich dem bei Homopolymeren beobachteten Verhalten ergab sich auch hier mit wachsendem Molekulargewicht eine Verbreiterung des Kautschuk-Plateaus und eine Verkleinerung des Endbereichs. Die komplexe Viskosität zeigte erst bei höheren Frequenzen das Einsetzen nicht-newtonschen Fließens an, wobei der nichtnewtonsche Bereich mit steigendem Molekulargewicht größer wurde.Der SpeichermodulG ergab sich im Endbereich als proportional zu 1,5, im Unterschied zu der bei Polystyrol beobachteten Proportionalität mit 2. Dagegen war der VerlustmodulG der Frequenz direkt proportional, ähnlich wie es auch bei Polystyrol beobachtet worden war. Die dynamische Viskosität | *| zeigte unabhängig vom Molekulargewicht bei hohen Frequenzen einen Bereich, in dem eine Potenz-Beziehung | *| ~ 0,9 herrschte, was auf die Wirkung von Verzweigungen hindeutet. Dagegen galt bei den niedrigen Frequenzen des newtonschen Bereichs|*| ~ . Mit Hilfe der WLF-Gleichung wurde der Ausdehnungskoeffizient f bestimmt, der ebenso wie der Glasübergang eine negative Abweichung von der Fox-Flory-Beziehung zeigte.


With 10 figures and 1 table  相似文献   

19.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.
Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung
Zusammenfassung Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

Nomenclature C specifie heat - C D total drag coefficient - C f friction drag coefficient - C p pressure drag coefficient - D diameter of cylinder,L=2R 0 - G, g gravitational acceleration - Gr Grashof number, g(TwT )D 3/v 2 - h local heat transfer coefficient - K thermal conductivity - L spacing between the centers of cylinder - M l shape function - N i shape function - Nu, local and average Nusselt numbers - P dimensionless pressure, p*/u 2 - p *,p pressure, free stream pressure - Pe Peclet number,RePr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,Du /v - R 0 radius of cylinder - T temperature - T w temperature on cylinder surface with fixed value - T free stream temperature - v dimensionless x-direction component of velocity,v */u - u * x-direction component of velocity - u free stream velocity - v dimensionless Y-direction component of velocity,v */u - v * Y-direction component of velocity - X x-direction axis - x dimensionless x-direction coordinate,x */D - x* x-direction coordinate - Y Y-direction axis - y dimensionless Y-direction coordinate,y */D - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - plane angle - dynamic viscosity - kinematic viscosity, / - density of fluid - w dimensionless surface shear stress, * w /u 2 - skw/* surface shear stress - dimensionless temperature,   相似文献   

20.
The accuracy of the approximation formulaeJ (t) ~ 1/G (t) andd lnJ (t)/d lnt ~ —d lnG (t)/d lnt, which interconnect stress-relaxation modulusG (t) and creep complianceJ (t) and their double logarithmic rates are investigated. For glassy polymers, the errors in the first formula are less than 1–2%, and in the second, they are generally in the order of a few percent, too. Similar estimates can also be found for the real parts of the analogous complex functionsJ * () andG * ().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号