首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

2.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

3.
Periodicity in a Nonlinear Predator-prey System with State Dependent Delays   总被引:1,自引:0,他引:1  
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system where a_i(t),c_j(t),d_i(t) are continuous positive periodic functions with periodic ω>0, b_1(t),b_2(t) are continuous periodic functions with periodic ωand ∫_0~ωbi(t)dt>0. T_i,σ_j, p_i (i=1,2,…,n, j=1, 2,…,m) are continuous and ω-periodic with respect to their first arguments, respectively, α_i, β_j,γ_i(i=1,2,…,n, j=1,2, …, m) are positive constants.  相似文献   

4.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

5.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

6.
We obtain the weighted sum identities for ■(-1)~kkζ(k,s-k),■k kζ(2k,2s-2k),■kkζ(2k+1,2s-2k-1),■k~2kζ(2k,2s-2k) and ■k~2kζ(2k+1,2s-2k-1).  相似文献   

7.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

8.
The paper suggests some conditions on the lower order terms, which provide that the solution of the Dirichlet problem for the general elliptic equation of the second order
$ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered} $ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered}   相似文献   

9.
Some oscillation theorems are given for the nonlinear second order elliptic equationsum from i,j=1 to N D_i[a_(ij)(x)Ψ(y)||▽y||~(p-2)D_(jy)] c(x)f(y)=0.The results are extensions of modified Riccati techniques and include recent results of Usami.  相似文献   

10.
By using the continuation theorem of Mawhin's coincidence degree theory, a sufficient condition is derived for the existence of positive periodic solutions for a distributed delay competition modelwhere ri and r2 are continuous w-periodic functions in R+=[0,∞) with ,ai,ci(i =1,2) are positive continuous w-periodic functions in R+=[0,∞),bi (i = 1,2) is nonnegative continuous w-periodic function in R+=[0,∞), w and T are positive constants. Ki,Lt ∈ C([-T,0], (01 88)) and Ki(s)ds = 1,ds - 1. i = 1,2. Some known results are improved and extended.  相似文献   

11.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

12.
For the linear hyperbolic equations $$\sum\limits_{i,j = 1}^{m + 1} {a_{ij} \left( {x,x_{m + 1} } \right)u_{x_i x_j } + \sum\limits_{i = 1}^{m + 1} {a_i \left( {x,x_{m + 1} } \right)u_{x_i } + c\left( {x,x_{m + 1} } \right)u = 0,x = \left( {x_1 ,...,x_m } \right)} ,} m \geqslant 2,$$ the correctness of multidimensional analogues of the problems of Darboux and Goursat is established and a theorem on the uniqueness of a solution of the Cauchy characteristic problem is proved.  相似文献   

13.
This paper concerns boundary value problems for quasilinear second order elliptic systems which are, for example, of the type
Here Ω is a Lipschitz domain in νj are the components of the unit outward normal vector field on ∂Ω, the sets Γβ are open in ∂Ω and their relative boundaries are Lipschitz hypersurfaces in ∂Ω. The coefficient functions are supposed to be bounded and measurable with respect to the space variable and smooth with respect to the unknown vector function u and to the control parameter λ. It is shown that, under natural conditions, such boundary value problems generate smooth Fredholm maps between appropriate Sobolev-Campanato spaces, that the weak solutions are H?lder continuous up to the boundary and that the Implicit Function Theorem and the Newton Iteration Procedure are applicable.  相似文献   

14.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

15.
For an integer m ≥ 4, we define a set of 2[m/2] × 2[m/2] matrices γj (m), (j = 0, 1,..., m - 1) which satisfy γj (m)γk (m) +γk (m)γj (m) = 2ηjk (m)I[m/2], where (ηjk (m)) 0≤j,k≤m-1 is a diagonal matrix, the first diagonal element of which is 1 and the others are -1, I[m/2] is a 2[m/1] × 2[m/2] identity matrix with [m/2] being the integer part of m/2. For m = 4 and 5, the representation (m) of the Lorentz Spin group is known. For m≥ 6, we prove that (i) when m = 2n, (n ≥ 3), (m) is the group generated by the set of matrices {T|T=1/√ξ((I+k) 0 + 0 I-K) ( U 0 0 U), (ii) when m = 2n + 1 (n≥ 3), (m) is generated by the set of matrices {T|T=1/√ξ(I -k^- k I)U,U∈ (m-1),ξ=1-m-2 ∑k,j=0 ηkja^k a^j〉0, K=i[m-3 ∑j=0 a^j γj(m-2)+a^(m-2) In],K^-=i[m-3∑j=0 a^j γj(m-2)-a^(m-2) In]}  相似文献   

16.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

17.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

18.
LetS be a closed subset of a Hausdorff linear topological space,S having no isolated points, and letc s (m) denote the largest integern for whichS is (m,n)-convex. Ifc s (k)=0 andc s (k+1)=1, then $$ c_s \left( m \right) = \sum\limits_{i = 1}^k {\left( {\begin{array}{*{20}c} {\left[ {\frac{{m + k - i}} {k}} \right]} \\ 2 \\ \end{array} } \right)} $$ . Moreover, ifT is a minimalm subset ofS, the combinatorial structure ofT is revealed.  相似文献   

19.
The paper analyses the convergence of sequences of control polygons produced by a binary subdivision scheme of the form
  相似文献   

20.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号