首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymptotic solutions of linear systems of ordinary differential equations are employed to discuss the relationship of the solution of a certain “complete” boundary problem.
$$\begin{gathered} \left\{ \begin{gathered} {\text{ }}\frac{{d{\text{ }}x_1 }}{{d{\text{ }}t}} = A_{11} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{1p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \varepsilon ^{h_2 } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{21} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{2p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ {\text{ }} \vdots {\text{ }} \vdots {\text{ }} \vdots \hfill \\ \varepsilon ^{h_p } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{p1} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{pp} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \end{gathered} \right\} \hfill \\ {\text{ }}R(\varepsilon ){\text{ }}x(a,{\text{ }}\varepsilon ){\text{ }} + {\text{ }}S(\varepsilon ){\text{ }}x(b,{\text{ }}\varepsilon ) = c(\varepsilon ){\text{ }} \hfill \\ \end{gathered}$$  相似文献   

2.
It is shown that the complete exceptionality condition for discontinuity waves associated with a second-order non-linear hyperbolic equation of the form
  相似文献   

3.
We study questions of existence, uniqueness and asymptotic behaviour for the solutions of u(x, t) of the problem $$\begin{gathered} {\text{ }}u_t - \Delta u = \lambda e^u ,{\text{ }}\lambda {\text{ > 0, }}t > 0,{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ (P){\text{ }}u(x,0) = u_0 (x),{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ {\text{ }}u(x,t) = 0{\text{ }}on{\text{ }}\partial B \times (0,\infty ), \hfill \\ \end{gathered} $$ where B is the unit ball $\{ x\varepsilon R^N :|x|{\text{ }} \leqq {\text{ }}1\} {\text{ and }}N \geqq 3$ . Our interest is focused on the parameter λ 0=2(N?2) for which (P) admits a singular stationary solution of the form $$S(x) = - 2log|x|$$ . We study the dynamical stability or instability of S, which depends on the dimension. In particular, there exists a minimal bounded stationary solution u which is stable if $3 \leqq N \leqq 9$ , while S is unstable. For $N \geqq 10$ there is no bounded minimal solution and S is an attractor from below but not from above. In fact, solutions larger than S cannot exist in any time interval (there is instantaneous blow-up), and this happens for all dimensions.  相似文献   

4.
Let u, p be a weak solution of the stationary Navier-Stokes equations in a bounded domain N, 5N . If u, p satisfy the additional conditions
  相似文献   

5.
A regular perturbation technique is employed to approximate the solution for fluid infiltration from a circular opening into an unsaturated medium. Introducing two empirical constitutive relations and relating the permeability k and water content with pore fluid pressure p, a nonlinear diffusion equation in terms of pore pressure is established. After rearranging the nonlinear diffusion equation, a parameter perturbation on is performed and an approximate solution with an error of is obtained, which correlate to a condition in which = . This approximate solution is verified by a finite difference solution and compared also with a linear solution in which the diffusivity is constant. It is shown that the perturbation solution with terms up to and including first-order can give a reasonably accurate solution for the parameter range for p 0 selected in this paper. The solution procedure provided in this paper also avoids the numerical problem normally encountered for a small time solution. The solution may also be used to overcome difficulties arising in solution procedure by the similarity transformation (Boltzmann), commonly conducted on diffusion equation, which cannot be applied for a finite wellbore problem.  相似文献   

6.
A closed-form model for the computation of the transient temperature and heat flux distribution in the case of a semi-infinite solid of constant properties is investigated. The temperature and heat flux solutions are presented for time-dependent, surface-heat flux of the forms: (i) , (ii) , and (iii) , where is a real number and is a positive real number. The dimensionless (or reduced) temperature and heat flux solutions are presented in terms of the Whittaker function, the generalized representation of an incomplete Gamma functionI (b, x) which can also be expressed by the complementary error functions. It is also demonstrated that the present analysis covers some well known (classical) solutions as well as a family of new solutions for the heat transfer through a semi-infinite solid.
Wärmeleitung in einem halbunendlichen Festkörper bei zeitveränderlichem Randwärmefluß: Eine analytische Untersuchung
Zusammenfassung Es wird ein geschlossenes Modell zur Berechnung der nichtstationären Temperatur- and Wärmestromverteilung für einen halbunendlichen Festkörper mit konstanten Stoffwerten untersucht. Die Lösungen für das Temperatur- und Wärmeflußfeld basieren auf folgenden Zeitgesetzen für den Randwärmefluß: (i) , (ii) , und (iii) wobei eine reelle Zahl und eine positive reelle Zahl ist. Die dimensionslosen Lösungen für das Temperatur- und Wärmflußfeld lassen sich in Form der Whittaker- Funktionen, der verallgemeinerten Darstellung einer unvollständigen Gamma-FunktionI (b, x) angeben, welche auch durch das komplementäre Fehlerintegral ausgedrückt werden kann. Es wird ferner gezeigt, daß die hier durchgeführte Untersuchung sowohl einige bekannte (klassische) Lösungen für die Wärmeleitung im halbunendlichen Festkörper liefert, wie auch eine Familie von neuen Lösungen.
  相似文献   

7.
Zusammenfassung Die Auslegung eines Filmverdampfers für Brennkammern erfordert die Kenntnis des verdunstenden Massenstroms; dieser wird bestimmt durch den gekoppelten WÄrme- und Stoffübergang in der Strömungsgrenzschicht. Die Ergebnisse numerischer Untersuchungen der Massenstromdichte in laminaren Grenzschichten werden herangezogen, um die Genauigkeit einer einfach auszuwertenden analytischen NÄherungslösung zu überprüfen, wobei verÄnderliche Stoffwerte berücksichtigt werden. Die gute übereinstimmung der analytischen NÄherung mit der numerischen Lösung für Benzol zeigt die allgemeine Brauchbarkeit des Verfahrens.
Analytical approximation for the laminar binary boundary-layer flow along a vaporizing liquid layer
For the design of a liquid film vaporizer the knowledge of the vaporizing mass flow is necessary. This is determined by the coupled heat and mass transfer. The results of numerical studies of the mass flow rates in laminar boundary layers are taken to test the accuracy of a simple analytical approximation taking variable transport properties into account. The analytical and numerical results for benzole agree rather well pointing out thereby the general validity of this method.

Bezeichnungen c Massenkonzentration - cp spezifische WÄrme - D12 binÄrer Diffusionskoeffizient - f dimensionslose Stromfunktion - h1,h2 Enthalpie der Komponenten - K,* von der Temperatur abhÄngige Koeffizienten (Gl.(11)) - M Molmasse - m* Massenstromdichte - p Druck - r VerdampfungswÄrme - T Temperatur - u,v Geschwindigkeitskomponenten - x, y, Y Ortskoordinaten - normierte Konzentration - normierte Temperatur - dynamische ZÄhigkeit - Dichte-ZÄhigkeitsverhÄltnis - WÄrmeleitfÄhigkeit Kennzahlen Prandtl-Zahl - Schmidt-Zahl - Reynoldszahl Indizes o Filmoberseite - u Plattenunterseite - 1 Gas 1 (Benzoldampf) - 2 Gas 2 (Luft) - Au\enrand der Grenzschicht  相似文献   

8.
A new forced convection parameter
  相似文献   

9.
We study the regularity and the asymptotic behavior of the solutions of the initial value problem for the porous medium equation $$\begin{gathered} {\text{ }}u_t = \left( {u^m } \right)_{xx} {\text{ in }}Q = \mathbb{R} \times \left( {{\text{0,}}\infty } \right){\text{,}} \hfill \\ u\left( {x{\text{,0}}} \right) = u_{\text{0}} \left( x \right){\text{ for }}x \in \mathbb{R}{\text{,}} \hfill \\ \end{gathered}$$ with m > 1 and, u 0a continuous, nonnegative function. It is well known that, across a moving interface x=ζ(t) of the solution u(x, t), the derivatives v tand v x of the pressure v = (m/(m?1)) u m?1 have jump discontinuities. We prove that each moving part of the interface is a C curve and that v is C on each side of the moving interface (and up to it). We also prove that for solutions with compact support the pressure becomes a concave function of x after a finite time. This fact implies sharp convergence rates for the solution and the interfaces as t→∞.  相似文献   

10.
IntroductionAboutsingularperturbationofboundaryvalueproblemforsecond_orderordinarydifferentialequationworksofalargenumberwereconsideredonlyforthecaseofinvolvingonesmallparameter[1- 4].Onlyafewworkswereconsideredforthecaseofinvolvingtwosmallparameters[5 - 8]…  相似文献   

11.
Two optical methods, light absorption and LDA, are applied to measure the concentration and velocity profiles of droplet suspensions flowing through a tube. The droplet concentration is non-uniform and has two maxima, one near the tube wall and one on the tube axis. The measured velocity profiles are blunted, but a central plug-flow region is not observed. The concentration of droplets on the tube axis and the degree of velocity profile blunting depend on relative viscosity. These results can be qualitatively compared with the theory of Chan and Leal.List of symbols a particle radius,m - a/R, non-dimensional particle radius - c volume concentration of droplets in suspension, m3/m3 - c 5 stream-average volume concentration of droplets in suspension, - D 2 R, tube diameter, m - L optical path length, m - L ij path length of laser beam through thej-th concentric layer when the beam crosses the tube diameter at the point on the inner circumference of thei-th layer, m - N exponent in Eqs. (3) and (4) - Q volumetric flowrate of suspension, - R tube radius, m - Re S S D, flow Reynolds number - r radial position (r = 0 on a tube axis), m - r r/R, non-dimensional radial position - v velocity of suspension, m/s - v v/v S , non-dimensional velocity - v 0 centre-line velocity of suspension (r = 0), m/s - v S Q/ R 2, stream-average velocity of suspension, m/s - x streamwise position (x = 0 at tube inlet), m - x x/D, non-dimensional streamwise position - c density of continuous phase, kg/m3 - d density of dispersed phase, kg/m3 - s stream-average density of suspension, kg/m3, equals density when homogenized - d - c, phase density difference, kg/m3 - µc viscosity of continuous phase, Pa · s - µd viscosity of dispersed (droplet) phase, Pa · s - µd/c, viscosity ratio - interfacial tension, N/m This work was financially supported by the National Science Foundation (USA) through an agreement no. J-F7F019P, M. Sklodowska-Curie fund  相似文献   

12.
We consider the stationary flow of a generalized Newtonian fluid which is modelled by an anisotropic dissipative potential f. More precisely, we are looking for a solution of the following system of nonlinear partial differential equations
((*))
Here denotes the pressure, g is a system of volume forces, and the tensor T is the gradient of the potential f. Our main hypothesis imposed on f is the existence of exponents 1 < p  q0 <  such that
holds with constants ,  > 0. Under natural assumptions on p and q0 we prove the existence of a weak solution u to the problem (*), moreover we prove interior C1,-regularity of u in the two-dimensional case. If n = 3, then interior partial regularity is established.  相似文献   

13.
1 IntroductionandLemmasTherearemanyresultsaboutexistence (globalorlocal)andasymptoticbehaviorofsolutionsforreaction_diffusionequations[1- 9].Bytheaidsofresults[2 ,3]ofequation u/ t=Δu-λ|u|γ- 1uwithinitial_boundaryvalues,paper [4 ]studiedtheproblemof u/ t=Δu-λ|eβtu|γ- …  相似文献   

14.
We prove the following statement: Theorem 1. Let E and be an arbitrary infinite-dimensional Banach space and a continuous mapping, respectively. Then, for every and > 0, there exists a continuous mapping such that
and the Cauchy problem
does not have a solution for every > 0.  相似文献   

15.
This paper considers the second-order differential difference equation
with the constant delay > 0 and the piecewise constant function with
Differential equations of this type occur in control systems, e.g., in heating systems and the pupil light reflex, if the controlling function is determined by a constant delay > 0 and the switch recognizes only the positions on [f(>) = a] and off [f(>) = b], depending on a constant threshold value . By the nonsmooth nonlinearity the differential equation allows detailed analysis. It turns out that there is a rich solution structure. For a fixed set of parameters a, b, , , infinitely many different periodic orbits of different minimal periods exist. There may be coexistence of three asymptotically stable periodic orbits (multistability of limit cycles). Stability or instability of orbits can be proven.  相似文献   

16.
17.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

18.
The paper discusses conditions under which the formally self-adjoint elliptic differential operator in R m given by 1 $$\tau {\text{ }}u = \sum\limits_{j,{\text{ }}k = 1}^m {[i\partial _j + b_j (x)]} {\text{ }}a_{jk} (x){\text{ }}[i\partial _k + b_k (x)]{\text{ }}u + q(x){\text{ }}u$$ has a unique self-adjoint extension. The novel feature is that the major conditions on the coefficients have to be imposed only in an increasing sequence of shell-like regions surrounding the origin. On the other hand it is shown that if these shells are broken so as to allow a tube extending to infinity in which the conditions on the coefficients are too weak, then, regardless of the coefficients elsewhere, there may not be a unique self-adjoint extension. The mathematical theorems are linked to the quantum-mechanical interpretation of essential self-adjointness (in the case that τ is the Schrödinger operator), that there is a unique self-adjoint extension if the particle cannot escape to infinity in a finite time.  相似文献   

19.
Summary The first part of this paper is concerned with the optimal design of spherical cupolas obeying the von Mises yield condition. Five different load combinations, which all include selfweight, are investigated. The second part of the paper deals with the optimal quadratic meridional shape of cupolas obeying the Tresca yield condition, considering selfweight plus the weight of a non-carrying uniform cover. It is established that at long spans some non-spherical Tresca cupolas are much more economical than spherical ones.
Optimale Kuppeln gleicher Festigkeit: Kugelschalen und axialsymmetrische Schalen
Übersicht Im ersten Teil dieser Arbeit wird der optimale Entwurf sphärischer Kuppeln behandelt, wobei die von Misessche Fließbewegung zugrunde gelegt wird. Fünf verschiedene Lastkombinationen werden untersucht. Der zweite Teil befaßt sich mit der optimalen quadratischen Form des Meridians von Kuppeln, die der Fließbedingung von Tresca folgen.

List of Symbols ak, bk, ck, Ak, Bk, Ck coefficients used in series solutions - A, B constants in the nondimensional equation of the meridional curve - normal component of the load per unit area of the middle surface - meridional and circumferential forces per unit width - radial pressure per unit area of the middle surface, - skin weight per unit area of the middle surface, - vertical external load per unit horizontal area, - base radius, - R radius of convergence - s - cupola thickness, - u, w subsidiary functions for quadratic cupolas - vertical component of the load per unit area of middle surface - resultant vertical force on a cupola segment - structural weight of cupola, - combined weight of cupola and skin, - distance from the axis of rotation, - vertical distance from the shell apex, - z auxiliary variable in series solutions - specific weight of structural material of cupola - radius of the middle surface, - uniaxial yield stress - meridional stress, - circumferential stress, - a, b, c, d, e subsidiary variables used in evaluating the meridional stress - auxiliary function used in series solutions This paper constitutes the third part of a study of shell optimization which was initiated and planned by the late Prof. W. Prager  相似文献   

20.
The paper concerns the asymptotic behavior as of solutions u(t, x) of the Cauchy problem for the inhomogeneous equation , x>0, with a mass-preserving boundary condition at x=0. It is assumed that F C 1[0, 1] F(0)=F(1)=0, and that one of the following conditions holds: (i) F has just one zero in (0, 1) and the derivative F is negative at 0 and 1, (ii) F is zero in (0, ) and positive in (, 1) with 0<<1, (iii) F is positive in (0, 1) and c 0 2 >2F(0) (the pushed case). Here c 0 is the minimum of possible speeds of travelling waves for the equation with k(x) replaced by zero. Under a natural restriction imposed on k(x) we prove, for a wide class of initial functions, that u(t, x) approaches w(x + m(t)) as uniformly in x>0, where w is a travelling wave with the speed c 0 and m is a solution of dm/dt = c 0-k(m). The result has immediate applications to the multidimensional non-linear diffusion equations arising in population genetics, combustion theory, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号