首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Monomers of (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCG), (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) and (−)-3-O-methyl epicatechin gallate (ECG3′Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (−)-catechin (C), (−)-gallocatechin (GC), (−)-gallocatechin gallate (GCG), and (−)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C18 reversed-phase column, fourteen compounds were rapidly separated within 15 min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5–7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40–105 min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1–1.0 ng for most components at the applied wavelength of 280 nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92–106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.  相似文献   

2.
Tea polyphenols are well known for their beneficial health effects that involve their anti-carcinogenic, anti-mutagenic, anti-pathogenic and anti-oxidative properties. The main polyphenols of green tea are favan-3-ols (catechins) and their corresponding gallate compounds, which constitute about one-third of the dry weight of tea leaves. Their main ingredients are (+)-catechin (C), (−)-epicatechin (EC), (−)-gallocatechin (GC), (−)-epigallocatechin (EGC), (−)-catechin gallate (CG), (−)-epicatechin gallate (ECG), (−)-gallocatechin gallate (GCG) and (−)-epigallocatechin gallate (EGCG). Each has slightly different biological properties. We have developed a method to simultaneously analyze all these compounds in plasma and urine. The samples were first incubated with β-d-glucuronidase and sulfatase to release the catechin residues from their corresponding conjugates for subsequent extraction by selective solid phase column, Waters Oasis HLB extraction cartridges. The extracted molecules were resolved by reversed phase HPLC and monitored by coulometric chemical detection on a CoulArray detector. All eight catechin compounds were analyzed in a single chromatogram within 25 min. For plasma and urine analyses, good linearity (>0.9950) was validated in the range 10-2000 and 10-5000 ng/ml, respectively. The coefficients of variance (CV) were less than 5%. Absolute recovery was greater than 85% and detection limit was 5 ng/ml. The chromatogram exhibited minimal interference as a result of the highly selective solid phase extraction and CoulArray detection.  相似文献   

3.
高效液相色谱法分析元宝枫叶中儿茶素类物质   总被引:7,自引:2,他引:5  
本文建立了元宝枫树叶中儿茶素种类及其含量的高效液相色谱(HPLC)测定方法。采用反相C18色谱柱,以甲醇/水(含0.5%乙酸)=25/75(V/V)为流动相,对没食子儿茶素(GC)、表没食子儿茶素(EGC)、儿茶素(C)、表没食子儿茶素没食子酸酯(EGCG)、表儿茶素(EC)和没食子儿茶素没食子酸酯(GCG)进行定性、定量分析;以甲醇/水(含0.5%乙酸)=35/65(V/V)为流动相,对表儿茶素没食子酸酯(ECG)和儿茶素没食子酸酯(CG)进行定性分析,柱温均为35℃,检测波长为278 nm,流速为1.0mL/min。结果表明:元宝枫叶中有EGC、EC和GCG,其它五种则无。EGC平均含量为0.0389 mg/g,方法精密度(RSD)为0.42%(n=6);EC平均含量为0.0289 mg/g,方法RSD为1.5%(n=6);GCG平均含量为0.284 mg/g,方法RSD为0.32%(n=6)。该方法简便、准确、分离效果好,为元宝枫叶开发成茶叶、饮料以及医疗保健品提供重要依据。  相似文献   

4.
A high-performance liquid chromatographic method with electrochemical detection was developed for the determination of twelve tea catechins including four major catechins: epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG); four of their epimers at the C-2 position, C, GC, CG and GCG; and four methylated catechin derivatives, epigallocatechin-3-O-(3-O-methyl)gallate, gallocatechin-3-O-(3-O-methyl)gallate, epigallocatechin-3-O-(4-O-methyl)gallate and epicatechin-3-O-(3-O-methyl)gallate. These catechins were separated on an ODS C18 reversed-phase column by isocratic elution with 0.1 M NaH2PO4 buffer (pH 2.5)-acetonitrile (87:13) containing 0.1 mM EDTA.2Na. The detection limits (S/N = 3) of these catechins were approximately 10-40 pmol ml-1 at an applied voltage of 600 mV. Extracting these catechins from tea leaf powder with H2O-acetonitrile (1:1) at 30 degrees C for 40 min inhibited the epimerization at C-2 significantly from these epicatechins compared to extraction with hot water at 90 degrees C. This analytical method is sensitive to and appropriate for the simultaneous determination of various biologically active catechins in green tea.  相似文献   

5.
茶叶及茶多酚中儿茶素的高效液相色谱分析方法研究   总被引:41,自引:0,他引:41  
戴军  王洪新  陈尚卫  汤坚 《色谱》2001,19(5):398-402
 筛选出HypersilBDSC18和ZorbaxSBC18两种适合同时分离茶叶和茶多酚中 7种儿茶素和咖啡因的反相柱。采用甲醇 水 醋酸 (或三氟醋酸 )作流动相 ,分别以等强度洗脱和梯度洗脱 (均在 30min内 )分离测定了我国 6种不同产地茶叶样品和 3种茶多酚样品中 7种儿茶素的含量。考察了 7种儿茶素和咖啡因的保留值与流动相组成及柱温的关系 ,优化了色谱条件及样品前处理方法。用电喷雾电离质谱 (ESI MS)定性确认没食子儿茶素没食子酸酯(GCG)和儿茶素没食子酸酯 (CG)两组分 ,并用高效液相色谱制备两对照品用于定量分析。  相似文献   

6.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

7.
A field-amplified sample injection (FASI) technique was elaborated for fast and sensitive determination of selected central nervous system drugs in human urine samples. Factors affecting the sensitivity enhancement, such as background electrolyte (BGE) and the analytical matrix composition were optimized and discussed. Pseudo-isotachophoresis (p-ITP) mechanism contribution in preconcentration mechanism was discussed. All separations were performed in uncoated fused silica capillaries 50 μm × 57 cm at 22 kV. The optimized analytical matrix was composed of 0.25 mM HCOOH in 90% (v/v) methanol, while BGE contained 45 mM TRIS/HCl (pH 2.20). The head-column injection was performed in 0.25 mM HCOOH water solution (3 s, 3.45 kPa). Sample was introduced into the capillary by electrokinetic injection (70 s, 5 kV) followed by short BGE plug (3 s, 3.45 kPa). Seven psychiatric drugs (olanzapine, prochlorperazine dimaleate, trifluoperazine dihydrochloride, perphenazine, promazine hydrochloride, clomipramine hydrochloride, and chlorprothixene hydrochloride) were separated in about 6 min. The elaborated method was additionally supported with dispersive liquid–liquid microextraction (DLLME) technique which in summary with FASI provided about 8000–13,000-fold sensitivity enhancement in comparison to the capillary zone electrophoresis (CZE) method with standard hydrodynamic injection (5 s, 3.45 kPa).  相似文献   

8.
Attomole quantities of catechins were determined by a capillary liquid chromatography system with electrochemical detection (CLC-ECD) and the system is applied to the determination of catechins in human plasma. The eight catechins: catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin gallate (Cg), epicatechin gallate (ECg), gallocatechin gallate (GCg), and epigallocatechin gallate (EGCg), were separated within 10 min using a capillary column (0.2 mm i.d.) and a mobile phase of phosphoric acid (85%)-methanol-water (0.5:27.5:72.5, v/v/v), and were detected at +0.85 V vs. Ag/AgCl. Peak heights were found to be linearly related to the amount of catechins injected, from 200 amol to 500 fmol (r > 0.998). The detection limits of the catechins were 61 amol for EGC, 75 amol for EC, 54 amol for GC, 61 amol for C, 67 amol for GCg, 75 amol for EGCg, 75 amol for ECg and 89 amol for Cg (S/N = 3). Because the present method is highly sensitive and allows facile pretreatment for plasma sample, the time courses of concentrations of catechins (GCg, EC, EGCg, ECg, and Cg) and their conjugates in human plasma obtained from a 10 microl plasma sample after ingestion of green tea could be determined.  相似文献   

9.
Zhang H  Zhou L  Chen X 《Electrophoresis》2008,29(7):1556-1564
An easy, simple, and highly efficient on-line preconcentration method for polyphenolic compounds in CE was developed. It combined two on-line concentration techniques, large-volume sample stacking (LVSS) and sweeping. The analytes preconcentration technique was carried out by pressure injection of large-volume sample followed by the EOF as a pump pushing the bulk of low-conductivity sample matrix out of the outlet of the capillary without the electrode polarity switching technique using five polyphenols as the model analytes. Identification and quantification of the analytes were performed by photodiode array UV (PDA) detection. The optimal BGE used for separation and preconcentration was a solution composed of 10 mM borate-90 mM sodium cholate (SC)-40% v/v ethylene glycol, without pH adjustment, the applied voltage was 27.5 kV. Under optimal preconcentration conditions (sample injection 99 s at 0.5 psi), the enhancement in the detection sensitivities of the peak height and peak area of the analytes using the on-line concentration technique was in the range of 18-26- and 23-44-fold comparing with the conventional injection mode (3 s). The detection limits for (-)-epigallocatechin (EGC), (-)-epicatechin (EC), (+)-catechin (C), (-)-epigallocatechin gallate (EGCG), and (-)-epicatechin gallate (ECG) were 4.3, 2.4, 2.2, 2.0, and 1.6 ng/mL, respectively. The five analytes were baseline-separated under the optimum conditions and the experimental results showed that preconcentration was well achieved.  相似文献   

10.
Practical considerations for the injection and separation of nitroaromatic explosives in seawater sample matrices are discussed. The use of high surfactant concentrations and long electrokinetic injections allows for improved detection limits. Sensitivity was enhanced by two mechanisms, improved stacking at the detector-side of the sample plug and desorption of analyte from the capillary wall by surfactant-containing BGE from the inlet side of the sample plug. Calculated limits of detection (S/N = 3) for analytes prepared in pure seawater were 70–800 ppb with injection times varying from 5 to 100 s.  相似文献   

11.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

12.
The proanthocyanidin extract from tea (Camellia sinensis) leaves was purified for the further study of the biological role of proanthocyanidins in blister blight leaf disease of tea, which is caused by the fungus Exobasidium vexans. An aqueous acetone extract of proanthocyanidins prepared from healthy tea leaves was partially purified using Sephadex LH-20 chromatography. The crude proanthocyanidin extract obtained was fractionated with high-speed counter-current chromatography (HSCCC) using the solvent system n-hexane–EtOAc–MeOH–water (1:5:1:5). The purity of the each isolated fraction after a single HSCCC run was evaluated by high-performance liquid chromatography (HPLC). Seven fractions of high purity were isolated. The identity of the compound present in each fraction isolated was established using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. Five proanthocyanidins and two flavanol digallates, (−)-epigallocatechin digallate (EGCDG) and (−)-epicatechin digallate (ECDG) were isolated. Comparison of spectral data of the proanthocyanidins isolated with those previously reported indicated that all five were known B-type proanthocyanidins with 2,3-cis stereochemistry in both the upper (u-unit) and the terminal (t-unit) units, and 4R configuration of the C-ring in the u-unit. The proanthocyanidins were established to be dimers composed of (−)-epigallocatechin gallate (EGCG), (−)-epicatechin gallate (ECG) and (−)-epiafzelechin gallate (EAG) units with the following structures: EGCG-(4β → 6)-EGCG, ECG-(4β → 6)-EGCG, EGCG-(4β → 6)-ECG, EAG-(4β → 6)-EGCG, ECG-(4β → 6)-ECG by analysis of spectral data. Therefore HSCCC offers a powerful method for the separation of a group of closely related naturally occurring compounds.  相似文献   

13.
We report the optimization of a sensitive, selective and robust derivatization method using 4-dimethylaminocinnamaldehyde (DMACA) for densitometric determination of (+)-catechin and (−)-epicatechin. The separation of these compounds was achieved by thin-layer chromatography (TLC) on cellulose plates developed with water. With DMACA in HCl, both compounds gave blue bands, while under the same conditions, vanillin produced a fast fading red coloration of bands. Quantitation at 655 nm showed that for both compounds the calibration curve was linear from 2 to 12 ng and polynomial from 2 to 30 ng, and the repeatability of chromatography of 20 ng was 3.5% (RSD, n = 6). The visible limit of detection of both standards was 1 ng, but the densitometric limit of detection was lower (0.2 ng). The optimized DMACA reagent is superior to the more frequently used vanillin reagent and is applicable also for determination of mixtures containing other catechins ((−)-catechin, (−)-epicatechin gallate, (−)-epigallocatechin gallate, procyanidin A2, procyanidin B1 and procyanidin B2).  相似文献   

14.
Microemulsion electrokinetic capillary chromatography (MEEKC) with sample stacking induced by reverse migrating pseudostationary phase (SRMP) technique in a suppressed electro-osmotic flow (EOF) strategy was investigated for analysing the new ultra-short hypnotic HIE-124 in mice serum. The proposed method utilized fused-silica capillary with a total length of 50 cm (effective length 40 cm), applied voltages for stacking and separation were 5.0 kV for 4.30 min and subsequently 25 kV, respectively, with a sample injection of 0.5 psi for 90 s. All the runs were carried out at 25 °C and detected at 213 nm. The optimum microemulsion background electrolyte (BGE) solution consisted of 0.8% (v/v) ethyl acetate, 6.6% (v/v) butan-2-ol, 1.0% (v/v) acetonitrile, 2.0% (w/v) sodium dodecyl sulfate (SDS), and 89.6 mL with 25 mM phosphate buffer pH 8. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with changing the voltage with an intermediate polarity switching step. The proposed method was validated carefully with respect to high specificity of the method, good linearity (r = 0.9994), fair wide linear concentration range (66-1500 ng mL−1), limit of detection and quantitation were 21.6 and 65.5 ng mL−1, respectively. The mean relative standard deviation (RSD) of the results of intra- and inter-day precision and accuracy were less than 6.0%, and overall recovery higher than 95% of HIE-124 in mice serum. The developed method could be used for the trace analyses of HIE-124 in serum and was finally used for the pharmacokinetic study investigation of HIE-124 in mice serum.  相似文献   

15.
A capillary electrophoretic method for the separation of the aminoglutethimide (AGT) enantiomers using methylated-β-cyclodextrin (M-β-CD) as chiral selector is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixture was achieved in less than 9 min with resolution factor Rs = 2.1, using a fused-silica capillary and a background electrolyte (BGE) of tris-phosphate buffer solution (50 mmol L−1, pH 3.0) containing 30 mg mL−1 of M-β-CD. The separation was carried out in normal polarity mode at 25 °C, 16 kV and using hydrostatic injection. Acceptable validation criteria for selectivity, linearity, precision, and accuracy/recovery were included. The proposed method was successfully applied to the assay of AGT enantiomers in pharmaceutical formulations. The computational calculations for the inclusion complexes of the R- and S-AGT-M-β-CD rationalized the reasons for the different migration times between the AGT enantiomers.  相似文献   

16.
Cheng Y  Chen H  Li Y  Chen X  Hu Z 《Talanta》2004,63(2):491-496
A novel, rapid and accurate method for the separation and determination of aloperine (ALP), sophoridine (SRI), matrine (MT) and oxymatrine (OMT) has been developed by combination of flow injection (FI) with microfluidic capillary electrophoresis (CE) for the first time. In the present paper, a continuous sample introduction interface was described. The interface with an H-channel structure was produced using a non-lithographic approach. The H-channel structure was fixed on a planar plastic base utilizing a horizontal 6.5 cm-long separation capillary with two vertical sidearm tubes on each end that served as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functioned as interface for coupling to the FI system. The buffer solution used was a 50 mmol l−1 borate solution with the pH adjusted to 8.80 with 2 mol l−1 HCl. The performance of the system was demonstrated in the separation and determination of ALP, SRI, MT and OMT with UV detection at 215 nm, achieving baseline separation within 2 min. A series of samples was injected repeatedly without current interruption and subsequent rinsing, and the contents of these four bio-alkaloids in two marketed drugs were determined with satisfactory recovery by this proposed method.  相似文献   

17.
In the present study, compact high-speed countercurrent chromatographic apparatus was constructed with three columns connected in series. Two sets of columns were prepared from 10 mm and 12 mm I.D. tubing to form 12 L and 15 L capacities, respectively. Performance of these columns was compared for the separation of (−)-epicatechin gallate (ECG) from a tea extract by flash countercurrent chromatography (FCCC). In each separation, 200 g of the tea extract in 1600 mL of mobile phase was loaded onto the column. The 12 L column gave 7.5 L (35 g of ECG) and the 15 L column gave 9 L (40 g of ECG) of ECG solution without impurities. The ECG solution was directly hydrolyzed by tannase into (−)-epicatechin. The hydrolysate was purified by flash chromatography on AB-8 macroporous resin to give 52 g of EC (purity 99.1%). This scaled up apparatus could be used for the industrial separation of natural products.  相似文献   

18.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

19.
A rapid and quantitative analytical method for the simultaneous determination of green tea catechins using ultra‐performance liquid chromatography/electrospray ionization–mass spectrometry was developed. Total analytical run time was 3.5 min for the detection of (?)‐epicatechin (EC), (?)‐epicatechin‐3‐O‐gallate (ECG), (?)‐epigallocatechin (EGC), (?)‐epigallocatechin‐3‐O‐gallate (EGCG) and myricetin as the internal standard (IS) in rat plasma. The calibration curves were linear over the range of 10–5000 ng/mL for all the catechins. The inter‐ and intra‐day precision (relative standard deviation) and accuracy (percentage deviation) of the method were both lower than 10%. The average extraction recoveries in plasma ranged from 68.5 to 86.5%, and the lower limits of quantification of EC, EGC, ECG and EGCG were 10 ng/mL with a signal‐to‐noise ratio of >10. The assay developed was successfully applied to a pharmacokinetic study of catechins following intravenous and intragastric administrations of green tea extract in rats. Plasma concentrations of four catechins were detected up to 5–24 h after administration, and the pharmacokinetic parameters of catechins were in agreement with previous studies. From these findings, taken together with the high productivity and precision, the developed method could be a reliable and reproducible tool for the evaluation of pharmacokinetic properties of catechins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced “nanobody” EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells. Using a background electrolyte (BGE) of 50 mM sodium phosphate (pH 8.0) in combination with a polybrene-poly(vinylsulfonic acid) capillary coating, CE analysis of EGa1 showed the presence of at least three components. Affinity of the EGa1 components towards the extracellular domain of EGFR was assessed by adding different concentrations (0–12 nM) of the receptor to the BGE while measuring the effective electrophoretic mobility of the respective EGa1 components. Binding curves obtained by plotting electrophoretic mobility shifts as a function of receptor concentration, yielded dissociation constants (Kd) of 1.65, 1.67, and 1.75 nM for the three components, respectively; these values were comparable to the Kd of 2.1 nM obtained for the bulk EGa1 product using a cellular assay. CE with mass spectrometry (MS) detection using a BGE of 25 mM ammonium acetate (pH 8.0) revealed that the EGa1 sample comprised of significant amounts of deamidated, bisdeamidated and N-terminal pyroglutamic acid products. CE–MS using a BGE of 100 mM acetic acid (pH 2.8) in combination with a polybrene–dextran sulfate–polybrene capillary coating demonstrated the additional presence of minor products related to incomplete removal of the signal peptide from the produced nanobody. Combining the results obtained from affinity CE and CE–MS, it is concluded that the EGa1 nanobody product is heterogeneous, comprising highly-related proteins that exhibit very similar affinity towards EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号