首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
Goyal RN  Chatterjee S  Rana AR 《Talanta》2010,83(1):149-155
Electrochemical sensor employing edge-plane pyrolytic graphite electrode (EPPGE) for the sensitive detection of hydrocortisone (HC) is delineated for the first time. The electrochemical properties are investigated exercising the cyclic voltammetry and square-wave voltammetry (SWV). When equating with the bare basal-plane pyrolytic graphite electrode (BPPGE), the EPPGE gave better response towards the detection of HC both in terms of sensitivity and detection limit. The voltammetric results indicated that EPPGE remarkably enhances the reduction of HC which leads to considerable amelioration of peak current with shift of peak potential to less negative values. The difference in the surface morphology of two electrodes has been studied. Also, the EPPGE delivered an analytical performance for HC with a sensitivity of 45 nA nM−1 and limit of detection of 88 nM in the concentration range 100-2000 nM. The method has been utilized for the determination of HC in pharmaceuticals and real samples. The electroanalytical method using EPPGE is the most sensitive method for determination of HC with lowest limit of detection to date. The major metabolites present in blood plasma did not intervene with the present investigation as they did not exhibit reduction peak in the experimental range used. A comparison of results with high performance liquid chromatography (HPLC) signalizes a good agreement.  相似文献   

2.
Goyal RN  Bishnoi S 《Talanta》2011,84(1):78-83
The simultaneous determination of catecholamines - epinephrine and norepinephrine by square wave voltammetry (SWV) at physiological pH 7.2 is reported using multi-walled carbon nanotubes modified edge plane pyrolytic graphite electrode (MWNT/EPPGE). A broad bump at ∼250 mV is appeared for the oxidation of epinephrine (EP) and norepinephrine (NE) at bare EPPGE whereas at MWNT/EPPGE two well-separated peaks at ∼150 and ∼215 mV are appeared for the oxidation of EP and NE, respectively. The oxidation peak current of both the neurotransmitters also increased significantly along with the negative shift of peak potentials using MWNT/EPPGE. The oxidation of both compounds occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed diffusion controlled pathway. Linear calibration curves were obtained for epinephrine and norepinephrine in the range 0.5-100 nM with limits of detection 0.15 × 10−9 and 0.90 × 10−10 M, respectively. The developed protocol is implemented for the simultaneous determination of epinephrine and norepinephrine in blood plasma and urine samples of smokers as well as in athletes.  相似文献   

3.
A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of ∼−1230 and ∼−1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 μM and the detection limit (3σ/slope) observed for prednisone and prednisolone were 0.45 × 10−8, 0.90 × 10−8 M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.  相似文献   

4.
Voltammetric investigation of two corticoid isomers—testosterone and epitestosterone has been carried out at bare and single-wall carbon nanotubes (SWNT)-modified edge plane pyrolytic graphite electrode (EPPGE). Square wave voltammetry (OSWV) has been used for the simultaneous determination of isomeric steroids. The reduction of the two isomers occurred in a pH dependent, 2e, 2H+ process and well-defined voltammetric peaks were observed. Under the optimum experimental conditions, linear calibration curves are obtained within the concentration range 5-1000 nM for both the steroids with the limit of detection 2.8 × 10−9 and 4.1 × 10−9 M for testosterone and epitestosterone respectively. The developed protocol is successfully implemented for the analysis of both the compounds in the urine samples of normal subjects as well as in patients undergoing treatment with testosterone. The results obtained from the proposed voltammetric method were also compared with HPLC analysis and found to be similar.  相似文献   

5.
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals.  相似文献   

6.
Kyoungseon Min 《Talanta》2009,80(2):1007-191
A novel 3-dimensional single wall carbon nanotubes (SWNTs)-polypyrrole (Ppy) composite was prepared as an electrode by chemically polymerizing polypyrrole onto SWNTs using a LiClO4 oxidant. This composite electrode was characterized by scanning electron microscopy (SEM) and cyclic voltammetry with 1 mM [Fe(CN)6]−3/[Fe(CN)6]−4. The SWNTs were thickly coated with chemically polymerized polypyrrole and the composite had many surface pores and crevices which could enhance mass transfer. The SWNTs-Ppy composite electrode showed a large specific surface area (30 m2/g) and a good reproducible current response, at about 100 times the peak current of a glassy carbon electrode (GCE). The diffusion coefficient was calculated to be 4.81 × 10−6 cm2/s. As a biosensor application, tyrosinase was immobilized on the functionalized SWNTs and tyrosinase-SWNTs-Ppy composite was prepared in the same manner. This tyrosinase-SWNT-Ppy composite electrode was used for amperometric detection of dopamine in the presence of ascorbic acid and showed high sensitivity (467 mA/M cm2) and lower detection limit (5 μM) compared to previous reports.  相似文献   

7.
Jain R  Jadon N  Radhapyari K 《Talanta》2006,70(2):383-386
Electrochemical behaviour of pyrantel pamoate has been studied by using different voltammetric and polarographic techniques in Britton Robinson buffer system. Differential pulse polarographic and cyclic voltammetric methods have been developed for the determination of drug in pharmaceutical formulation. A well-defined cathodic wave and one anodic peak were observed for the pyrantel pamoate in the entire pH range. Number of electrons transferred in the reduction process was calculated and the reduction mechanism postulated. The results indicate that the electrode process is reversible and diffusion controlled. The proposed method has been validated. The peak current is found to be linear over the concentration range 4 × 10−4 to 2 × 10−2 mol L−1. The lower detection limit (LOD) and lower limit of quantitation (LOQ) is found to be 2.45 × 10−5 and 8 × 10−5 mol L−1.  相似文献   

8.
Multi-walled carbon nanotube decorated with silver nanoparticles (AgNPs-MWCNT) is used as an effective strategy for modification of the surface of pyrolytic graphite electrode (PGE). This modification procedure improved colloidal dispersion of the decorated MWCNTs in water, affording uniform and stable thin films for altering the surface properties of the working electrode. Robust electrode for sensing applications is obtained in a simple solvent evaporation process. The electrochemical behavior of sumatriptan (Sum) at the bare PGE and AgNPs-MWCNT modified PGE is investigated. The results indicate that the AgNPs-MWCNT modified PGE significantly enhanced the oxidation peak current of Sum. A remarkable enhancement in microscopic area of the electrode together with strong adsorption of Sum on the surface of the modified electrode resulted in a considerable increase in the peak current of Sum. Experimental parameters, such as scan rate, pH, accumulation conditions and amount of the modifier used on the PGE surface are optimized by monitoring the CV responses toward Sum. It is found that a maximum current response can be obtained at pH 7.4 after accumulation at open circuit for 150 s. Further experiments demonstrated that the oxidative peak currents increased linearly with Sum concentration in the range of 8.0 × 10−8-1.0 × 10−4 mol L−1 with a detection limit of 4.0 × 10−8 mol L−1. The modified electrode showed high sensitivity, selectivity, long-term stability and remarkable voltammetric reproducibility in response to Sum. These excellent properties make the prepared sensor suitable for the analysis in pharmaceutical and clinical preparations. The modified electrode was successfully applied for the accurate determination of trace amounts of Sum in pharmaceutical preparations.  相似文献   

9.
The electrochemical behaviour of nandrolone is investigated by cyclic, differential pulse and square-wave voltammetry in phosphate buffer system at fullerene-C60-modified electrode. The modified electrode shows an excellent electrocatalytic activity towards the oxidation of nandrolone resulting in a marked lowering in the peak potential and considerable improvement of the peak current as compared to the electrochemical activity at the bare glassy carbon electrode. The oxidation process is shown to be irreversible and diffusion-controlled. A linear range of 50 μM to 0.1 nM is obtained along with a detection limit and sensitivity of 0.42 nM and 0.358 nA nM−1, respectively, in square-wave voltammetric technique. A diffusion coefficient of 4.13 × 10−8 cm2 s−1 was found for nandrolone using chronoamperometry. The effect of interferents, stability and reproducibility of the proposed method were also studied. The described method was successfully employed for the determination of nandrolone in human serum and urine samples. A cross-validation of observed results by GC-MS indicates that the results are in good agreement with each other.  相似文献   

10.
Yan Wang  Zhen-zhen Chen 《Talanta》2010,82(2):534-621
This report described the direct voltammetric detection of peroxynitrite (ONOO) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0 × 10−6 to 3.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−7 mol L−1 (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro.  相似文献   

11.
Radi A 《Talanta》2005,65(1):271-275
The voltammetric behaviour of chloroquine was investigated at carbon paste and dsDNA-modified carbon paste electrodes in different buffer systems over a wide pH range using cyclic and differential pulse voltammetry. Chloroquine was oxidized in the pH range 2.0-11.0 yielding one irreversible main oxidation peak. A second peak was also observed only in the pH range 5.0-7.0. The modification of the carbon paste surface with dsDNA allowed a preconcentration process to take place for chloroquine such that higher sensitivity was achieved as compared with the bare surface. The response was characterized with respect to solution pH, ionic strength, accumulation time and potential, chloroquine concentration, and other variables. Stripping voltammetric response showed a linear calibration curve in the range 1.0 × 10−7 to 1.0 × 10−5 mol l−1 with a detection limit of 3.0 × 10−8 mol l−1 at the dsDNA-modified electrode. Application of the modified electrode to serum, without sample pretreatment, resulted in good recovery higher than 95% and the higher standard deviation was 3.0%.  相似文献   

12.
Sun D  Xie X  Cai Y  Zhang H  Wu K 《Analytica chimica acta》2007,581(1):27-31
In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd2+. Based on this, an electrochemical method was developed for the determination of trace levels of Cd2+ by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd2+ was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at −1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at −0.84 V, which can be used as analytical signal for Cd2+. The linear range is found to be from 4.0 × 10−8 to 4.0 × 10−6 mol L−1, and the lowest detectable concentration is estimated to be 4.0 × 10−9 mol L−1. Finally, this method was successfully employed to detect Cd2+ in water samples.  相似文献   

13.
A fullerene-C60-modified glassy carbon electrode (GCE) is used for the simultaneous determination of adenosine and guanosine by differential pulse voltammetry. Compared to a bare glassy carbon electrode, the modified electrode exhibits an apparent shift of the oxidation potentials in the cathodic direction and a marked enhancement in the voltammetric peak current response for both the biomolecules. Linear calibration curves are obtained over the concentration range 0.5 μM-1.0 mM in 0.1 M phosphate buffer solution at pH 7.2 with a detection limit of 3.02 × 10−7 M and 1.45 × 10−7 M for individual determination of adenosine and guanosine, respectively. The interference studies showed that the fullerene-C60-modified glassy carbon electrode exhibited excellent selectivity in the presence of hypoxanthine, xanthine, uric acid and ascorbic acid. The proposed procedure was successfully applied to detect adenosine and guanosine in human blood plasma and urine, without any preliminary pre-treatment.  相似文献   

14.
A novel assay for the voltammetric detection of 18-bases DNA sequences relating to Chronic Myelogenous Leukemia (CML, Type b3a2) using methylene blue (MB) as the hybridization indicator was reported. DNA was covalently attached onto a glassy carbon electrode (GCE) through amines of the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N′-ethyl carbodiimidehydrochloride (EDC). The covalently immobilized single-stranded DNA (ssDNA) could selectively hybridize with its complementary DNA (cDNA) in solution to form double-stranded DNA (dsDNA) on the surface. A significant increase of the peak current for methylene blue upon the hybridization of immobilized ssDNA with cDNA in the solution was observed. This peak current change was used to monitor the recognition of CML DNA sequence. This electrochemical approach is sequence specific as indicated by the control experiments in which no peak current change was observed if a non-complementary DNA sequence was used. Factors, such as DNA target concentration and hybridization conditions determining the sensitivity of the electrochemical assay were investigated. Under optimal conditions, this sensor has a good calibration range between 1.25 × 10−7 and 6.75 × 10−7 M, with CML DNA sequence detection limit of 5.9 × 10−8 M.  相似文献   

15.
The voltammetric behaviour of Imatinib (STI 571) and its main metabolite (N-demethylated piperazine derivative) were studied by square-wave techniques, resulting in to two methods for their determination in aqueous and urine samples at pH 2. The application of the square-wave (SW) without the adsorptive accumulation and voltammetric stripping (AdSV) exhibit a peak at a reduction potential of −0.70 V for an accumulation potential of −0.45 V. The sensitivity was higher for the stripping technique because a signal four times higher than that provided by the square-wave method without the previous accumulation was obtained. Due to the fact that Imatinib and its metabolite show the same voltammetric reduction process, some experiments were performed in order to compare the voltammetric response of Imatinib and its main metabolite in a similar ratio than that of the therapeutic concentration. The calibration curve for Imatinib in urine was linear in the range from 1.9 × 10−8 to 1.9 × 10−6 M in stripping mode with an accumulation time (tacc) of 10 s. The relative standard deviations obtained for concentration levels of Imatinib as low as 2.0 × 10−7 M for square-wave was 2.17% (n = 9) and for stripping square-wave was 2.65% (n = 9) in the same day. The limits of detection for square-wave and stripping square-wave were 5.55 × 10−9 and 5.19 × 10−9 M, respectively. Thus, the presented method are straightforward, rapid and sensitive and has been applied to the determination of Imatinib and its main metabolite altogether in urine samples from real patients.  相似文献   

16.
Wang F  Zhao F  Zhang Y  Yang H  Ye B 《Talanta》2011,84(1):160-168
The present paper describes to modify a double stranded DNA-octadecylamine (ODA) Langmuir-Blodgett film on a glassy carbon electrode (GCE) surface to develop a voltammetric sensor for the detection of trace amounts of baicalein. The electrode was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). Electrochemical behaviour of baicalein at the modified electrode had been investigated in pH 2.87 Britton-Robinson buffer solutions by CV and square wave voltammetry (SWV). Compared with bare GCE, the electrode presented an electrocatalytic redox for baicalein. Under the optimum conditions, the modified electrode showed a linear voltammetric response for the baicalein within a concentration range of 1.0 × 10−8-2.0 × 10−6 mol L−1, and a value of 6.0 × 10−9 mol L−1 was calculated for the detection limit. And the modified electrode exhibited an excellent immunity from epinephrine, dopamine, glucose and ascorbic acid interference. The method was also applied successfully to detect baicalein in the medicinal tablets and spiked human blood serum samples with satisfactory results.  相似文献   

17.
Liu T  Li M  Li Q 《Talanta》2004,63(4):1053-1059
Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of  mol l−1. The detection limit is 8.0×10−7 mol l−1. This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.  相似文献   

18.
Goyal RN  Bishnoi S  Chasta H  Aziz MA  Oyama M 《Talanta》2011,85(5):2626-2631
The effect of surface modification of indium tin oxide (ITO) by multi wall carbon nanotube (MWNT) and gold nanoparticles attached multi wall carbon nanotube (AuNP-MWNT) has been studied to determine tryptophan, an important and essential amino acid for humans and herbivores. A detailed comparison has been made among the voltammetric response of bare ITO, MWNT/ITO and AuNP-MWNT/ITO in respects of several essential analytical parameters viz. sensitivity, detection limit, peak current and peak potential of tryptophan. The AuNP-MWNT/ITO exhibited a well defined anodic peak at pH 7.2 at a potential of ∼669 mV for the oxidation of tryptophan as compared to 760 mV at MWNT/ITO electrode. Under optimum conditions linear calibration curve was obtained over tryptophan concentration range 0.5-90.0 μM in phosphate buffer solution of pH 7.2 with detection limit and sensitivity of 0.025 μM and 0.12 μA μM−1, respectively. The oxidation of tryptophan occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed adsorption controlled pathway. The method has been found selective and successfully implemented for the determination of tryptophan in human urine and plasma samples using standard addition method. The electrode exhibited an efficient catalytic response with good reproducibility and stability.  相似文献   

19.
This paper describes the fabrication of graphene on glassy carbon electrode (GCE) by electrochemical reduction of graphene oxide (GO) attached through 1,6-hexadiamine on GCE and the simultaneous determination of structurally similar four purine derivatives using the resultant electrochemically reduced GO (ERGO) modified electrode. The electrocatalytic activity of ERGO was investigated toward the oxidation of four important purine derivatives, uric acid (UA), xanthine (XN), hypoxanthine (HXN) and caffeine (CAF) at physiological pH. The modified electrode not only enhanced the oxidation currents of the four purine derivatives but also shifted their oxidation potentials toward less positive potentials in contrast to bare GCE. Further, it successfully separates the voltammetric signals of the four purine derivatives in a mixture and hence used for the simultaneous determination of them. Selective determination of one purine derivative in the presence of low concentrations other three purine derivatives was also realized at the present modified electrode. Using differential pulse voltammetry, detection limits of 8.8 × 10−8 M, 1.1 × 10−7 M, 3.2 × 10−7 M and 4.3 × 10−7 M were obtained for UA, XN, HXN and CAF, respectively. The practical application of the modified electrode was demonstrated by simultaneously determining the concentrations of UA, XN, HXN and CAF in human blood plasma and urine samples.  相似文献   

20.
A new palladium nanoparticle functionalized multi-wall carbon nanotubes (nano-Pd/CNTs) modified pyrolytic graphite electrode (PGE) has been fabricated for electrochemical sensing of calcium dobesilate (CD) in pharmaceutical capsules. The nano-Pd/CNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nano-Pd/CNTs composite showed a strong electrocatalytic property for CD. The anodic peak current is 6-fold than that obtained in bare PGE and the oxidation potential has an obvious shift to negative. The anodic peak current is proportional to the concentration of CD in the range of 1.0 × 10−7 to 7.0 × 10−4 mol L−1, with a linear relative coefficient r = 0.999 and a detection limit 4.0 × 10−8 mol L−1 (S/N = 3). This kind of electrode shows good stability, sensitivity, reproducibility, large linear range and low detection limit towards electrochemical determination of CD. The proposed method provides a selective and sensitive electrochemical sensor of calcium dobesilate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号