首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The kinetics of RuIII catalysed oxidation of erythritol (1,2,3,4-tetrahydroxybutane) and dulcitol (1,2,3,4,5,6-hexahydroxyhexane) byN-bromoacetamide (NBA) in HClO4 in the presence of Hg(OAc)2 as a scavenger for Br have been investigated. The reactions are zeroth order with respect to both alcohols, and first order at low concentration of NBA tending to zero order at high NBA concentrations. The oxidation rate is directly proportional to [RuIII] and a positive effect on the rate is observed for [H+] and [Cl] whereas a negative effect is observed for acetamide and ionic strength. D2O and Hg(OAc)2 do not influence the oxidation rate; (H2OBr)+ is postulated as the oxidising species. A suitable mechanism consistent with the observed kinetic data is proposed.  相似文献   

2.
Summary The kinetics of iridium(III)-catalysed oxidation of 1,2-ethanediol and 1,4-butanediol by N-bromoacetamide (NBA) in HClO4 in the presence of [Hg(OAc)2] as a scavenger for Br have been investigated. The reactions are zero-order with respect to both diols, and first-order in NBA at low NBA concentrations, tending to zero order at high concentrations. The order in IrIII decreases from unity to zero at high iridium(III) concentrations. A positive effect on the oxidation rate is observed for [H+] and [HgII] whereas a negative effect is observed for acetamide and [Cl]. Ionic strength does not influence the oxidation rate. (H2OBr)+ is postulated as the oxidizing species. A mechanism consistent with the observed kinetic data is proposed.  相似文献   

3.
Summary Kinetic investigations on the RuO4-catalysed oxidation of cyclopentanol (Cypol) and cyclohexanol (Cyhol) in alkaline KBrO3 in the presence of Hg(OAc)2 which acts as a bromide ion scavenger have been made in the 30°–45°C range. The reaction exhibits zero order kinetics in OH and is first order with respect to BrO 3 , substrate and RuO4. The influence of Hg(OAc)2 and ionic strength is insignificant. A transient complex, formed between HRuO 5 (the active species of RuO4) and the cyclic alcohol, reacts with BrO 3 in a slow, rate determining step to give the products; the catalyst is regenerated.  相似文献   

4.
Kinetic investigations on the RuIII-catalysed oxidation of glycerol by an acidified solution of KBrO3 in the presence of Hg(OAc)2 as a scavenger have been carried out in the 30–50 °C range. First order kinetics in the lower KBrO3 concentration range tended to zero order at higher concentrations. The reaction follows zero order kinetics in glycerol and [H+]; the order is one with respect to [RuIII]. An increase in [Cl] showed a positive effect, while addition of NaClO4 has a negligible effect on the reaction rate. Hg(OAc)2 and D2O have an insignificant effect on the reaction rate. A suitable mechanism in conformity with the kinetic observations has been proposed and thermodynamic parameters computed.  相似文献   

5.
The kinetics of Ru(III)‐catalyzed and Hg(II)‐co‐catalyzed oxidation of D‐glucose (Glc) and cellobiose (Cel) by N‐bromoacetamide (NBA) in the presence of perchloric acid at 40 °C have been investigated. The reactions exhibit the first order kinetics with respect to NBA, but tend towards the zeroth order to higher NBA. The reactions are the first order with respect to Ru(III) and are fractional positive order with respect to [reducing sugar]. Positive effect of Cl? and Hg(OAc)2 on the rate of reaction is also evident in the oxidation of both reducing sugars. A negative effect of variation of H+ and acetamide was observed whereas the ionic strength (µ) of the medium had no influence on the oxidation rate. The rate of reaction decreased with the increase in dielectric constant and this enabled the computation of dAB, the size of the activated complex. Various activation parameters have been evaluated and suitable explanation for the formation of the most reactive activated complex has been given. The main products of the oxidation are the corresponding arabinonic acid and formic acid. HOBr and [RuCl3(H2O)2OH]? were postulated as the reactive species of oxidant and catalyst respectively. A common mechanism, consistent with the kinetic data and supported by the observed effect of ionic strength, dielectric constant and multiple regression analysis, has been proposed. Formation of complex species such as [RuCl3·S·(H2O)OH]? and RuCl3·S·OHgBr·OH during the course of reaction was fully supported by kinetic and spectral evidences.  相似文献   

6.
The kinetics of oxidation of L-Alanine (Ala) by N-bromophthalimide (NBP) was studied in the presence of an anionic surfactant, sodium dodecyl sulfate, in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Ala] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant [Phthalimide] has decreased the rate of reaction. The rate of reaction increased with increase in inorganic salts concentration i.e., [Cl] and [Br], whereas a change in ionic strength of the medium and [Hg(OAc)2] had no effect on oxidation velocity. The rate of reaction decreased with a decrease in dielectric constant of the medium. CH3CN was identified as the main oxidation product of the reaction. The various activation parameters have been computed and suitable mechanism consistent with the experimental findings has also been proposed. The micelle-binding constant has been calculated. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 3, pp. 386–396. The article is published in the original.  相似文献   

7.
The kinetics of oxidation of the sugars d(+)Melibiose (mel) and Cellobiose (cel) by N-bromoacetamide (NBA) in the presence of Rh(III) chloride as homogeneous catalyst in acidic medium at 45 °C have been investigated. The reactions are first-order with respect to [NBA], [Rh(III)] and [substrate]. The rate is proportional to [H+]. No effects of [Hg(II)], [NHA] or [Cl] on the rates were observed. Ionic strength and dielectric constant also have little effect. The observed kinetic data, available literature and spectroscopic evidence lead us to conclude that NBAH+ and [RhCl5(H2O)]2− are the reactive species of NBA and Rh(III) chloride, respectively. The rate-determining step of the proposed reaction path common for both sugars gives an activated complex by the interaction of a charged complex species and neutral sugar molecule, which in the subsequent steps disproportionates into the reaction products with the regeneration of catalyst. The reactions have been studied at four different temperatures and with the help of first-order rate constant values, various activation parameters have been calculated. The main oxidation products of the reactions were identified as arabinonic acid, formic acid and lyxonic acid in the case of mel and arabinonic acid and formic acid in the case of cel.  相似文献   

8.
The oxidation of d-panthenol by MnO4 was studied in the absence and in the presence of ruthenium(III) catalyst in alkaline medium at 298 K and at constant ionic strength of 0.50 mol dm−3 by spectrophotometry. The stoichiometry in both the cases was [panthenol]: [MnO4 ] = 1:4. The oxidation products were identified by IR and GC–MS. The reaction was first-order with respect to both MnO4 and ruthenium(III), while the orders with respect to both panthenol and alkali varied from first order to zero order as the concentrations increased. The effects of added products, ionic strength and dielectric constant were studied. The reaction constants, activation parameters and thermodynamic quantities were calculated for both the uncatalysed and catalysed reactions.  相似文献   

9.
1,4-Dibenzylpiperazine (1),-2-piperazinone (7),-2,6-piperazinedione (9), and 1-benzoyl-4-benzylpiperazine (30) were oxidized by RuO4 (generated in situ) by attack at their endocyclic and exocyclic (i.e., benzylic) aminic N-α-C-H bonds to afford various oxygenated derivatives, including acyclic diformamides, benzaldehyde, and benzoic acid. The reaction outcome was complicated by (i) the hydrolysis of diformamides, occurred during the work-up, and (ii) the reaction of benzaldehyde with the hydrolysis-derived amines giving imidazolidines and/or Schiff bases. Benzoic acid resulted from benzaldehyde only. Compounds 7, 30, and 1-benzylpiperazine, but not 9, were transiently formed during the oxidation of 1. In the same reaction conditions, 1,4-dibenzyl-2,3-(or 2,5)-piperazinedione, 1,4-dibenzyl-2,3,6-piperazinetrione, 4-benzyol-1-benzyl-2-piperazinone, and 1,4-dibenzoylpiperazine were inert. The proposed oxidation mechanism involves the formation of endocyclic and exocyclic iminium cations, as well as of cyclic enamines. The latter intermediates probably result by base-induced deprotonation of the iminium cations, provided an N +−β-proton is available. In the case of 1, the cations were trapped with NaCN as the corresponding α-aminonitriles. The statistically corrected regioselectivity (endocyclic/exocyclic) of the RuO4-induced oxidation reaction of 1, 7, and 30 was 1.2–1.3.  相似文献   

10.
Kinetic studies in homogeneously Rh(III)-catalyzed oxidation of reducing sugars, i.e. maltose and lactose, by N-bromoacetamide (NBA) in the presence of perchloric acid have been made at 40 °C using mercuric acetate as Br ion scavenger. The results obtained for the oxidation of both reducing sugars show first-order dependence of the reactions on NBA at its low concentrations, which shifts towards zero-order at its higher concentrations. First-order kinetics in [Rh(III)] and zero-order kinetics in [reducing sugar] were observed. Positive effect of [Cl] was observed in the oxidation of both maltose and lactose. Order of reaction was found to be one and half (1.5) throughout the variation of [H+] in the oxidation of both maltose and lactose. An increase in the rate of reaction with the decrease in [Hg(OAc)2] and [NHA] was observed for both the redox systems. The rate of oxidation is unaffected by the change in ionic strength (μ) of the medium. The main oxidation products of the reactions were identified as formic acid and arabinonic acid in the case of maltose and formic acid, arabinonic acid and lyxonic acid in the case of lactose. A common mechanism for the oxidation of both maltose and lactose, showing the formation of most reactive activated complex, [RhCl4(H3O)H2OBr]+, and an unreactive complex, [RhCl4(H2O)(H2OBrHg)]2+, has been proposed. Various activation parameters have also been calculated and on the basis of these parameters, a suitable explanation for the reaction mechanism has been given.  相似文献   

11.
The kinetics of mercury(II)-catalyzed substitution of cyanide ligand in hexacyanoruthenate(II) by pyrazine (Pz) has been investigated spectrophotometrically at 370 nm in aqueous medium. The reaction exhibits first-order dependence on [Pz] at low concentrations, then reaches a maximum value, and finally decreases at high [Pz]. The reaction has a variable-order dependence in [Ru(CN)6 4−], unity at lower [Ru(CN)6 4−], and fractional order, not tending to zero order at higher [Ru(CN)6 4−]. The effects of pH, ionic strength, concentration of catalyst, and temperature variations have been studied. The activation parameters for the reaction were calculated. We propose a solvent assisted interchange dissociative (I d) mechanism for the reaction.  相似文献   

12.
Kinetics of oxidation of ethylene glycol and glycerol by acidic solution of N-bromoacetamide (NBA) in the presence of ruthenium (III) chloride as a homogeneous catalyst and mercuric acetate as scavenger in the temperature range of 30–50°C have been reported. The reactions follow identical kinetics, being zero-order in substrate and first-order in Ru(III). First order dependence of the reaction on NBA at its low concentrations tends to zero order in the higher concentration range. Positive effect of [H?] and [Cl?] has been observed. A negative effect of acetamide and ionic strength of the medium is observed while D2O and mercuric acetate show zero effect on the reaction velocity. Various activation parameters have been computed. The main product of the oxidation is corresponding acid. (H2OBr)+ has been postulated as the oxidizing species. A suitable mechanism in conformity with the kinetic data has been proposed.  相似文献   

13.
The kinetic and mechanistic studies of homogeneously Rh(III)-catalysed oxidation of D-xylose and L-sorbose by Nbromoacetamide (NBA) in perchloric acid medium were carried out at 40 °C. The reactions were first-order with respect to each of [NBA], [Rh(III)] and [H+] and zero-order in [sugar]. Variation of [Cl?] showed positive effect while variation of [Hg(OAc)2] showed negative effect on the rate of the reactions. Addition of acetamide (NHA) had a negative effect on the rate of the reaction. The rate of the reaction was unaffected by the change in ionic strength (??) of the medium. Various activation parameters were calculated with the help of pseudo-first-order rate constant, k1, obtained at four different temperatures. The mechanisms involving RhCl4(H2O)2 ?, as reactive species of rhodium(III), and H2OBr+, as reactive species of NBA, are proposed which find support from the spectrophotometric evidence and activation parameters, especially the entropy of activation.  相似文献   

14.
Kinetic investigations on Ru(III)‐catalyzed oxidation of cyclopentanol and cyclohexanol by acidic solution of N‐bromoacetamide (NBA) in the presence of mercury(II) acetate as a scavenger have been carried out in the temperature range of 30–45°C. Similar kinetics was followed by both the cyclic alcohols. First‐order kinetics in the lower concentration range of NBA was observed to tend to zero order at its higher concentrations. The reaction exhibits a zero‐order rate dependence with respect to each cyclic alcohol, while it is first order in RuIII. Increase in [H+] and [Cl?] showed positive effect, while successive addition of acetamide exhibited negative effect on the reaction rate. Insignificant effect of sodium perchlorate, D2O, and mercury(II) acetate on the reaction velocity was observed. Cationic bromine has been proposed as the real oxidizing species. Various thermodynamic parameters have been computed. A suitable mechanism in agreement with the kinetic observations has been proposed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 275–281, 2005  相似文献   

15.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   

16.
The kinetics of the oxidation of 2-methyl cyclohexanone and cycloheptanone with Fe(CN)6 3− catalyzed by RhCl3 in alkaline medium was investigated at four temperatures. The rate follows direct proportionality with respect to lower concentrations of hexacyanoferrate(III) ion, but tends to become zero order at higher concentrations of the oxidant, while the reaction shows first-order kinetics with respect to hydroxide ion and cyclic ketone concentrations. The rate shows a peculiar nature with respect to RhCl3 concentrations in that it increases with increase in catalyst at low catalyst concentrations but after reaching a maximum, further increase in concentration retards the rate. An increase in the ionic strength of the medium increases the rate, while increase in the Fe(CN)6 4− concentration decreases the rate.  相似文献   

17.
The oxidation of catechol by molecular oxygen in the presence of a catalytic amount of copper(II) complex with 2-methyl-3-amino-(3H)quinazoline-4-one (MAQ) and various anions (Cl, Br, ClO 4 , SCN, NO 3 and SO 4 ) was studied. The catecholase biomimetic catalytic activity of the copper(II) complexes has been determined spectrophotometrically by monitoring the oxidative transformation of catechol to the corresponding light absorbing o-quinone (Q). The rate of the catalytic oxidation reaction was investigated and correlated with the catalyst structure, time, concentration of catalyst and substrate and finally solvent effects. Addition of pyridine or Et3N showed a dramatic effect on the rate of oxidation reaction. Kinetic investigations demonstrate that the rate of oxidation reaction has a first order dependence with respect to the catalyst and catechol concentration and obeying Michaelis–Menten Kinetics. It was shown that the catalytic activity depends on the coordination environment of the catalyst created by the nature of counter anions bound to copper(II) ion in the complex molecule and follows the order: Cl > NO 3 > Br > SO 4 > SCN > ClO 4 . To further elucidate the catalytic activity of the complexes, their electrochemical properties were investigated and the catecholase mimetic activity has been correlated with the redox potential of the Cu2+/Cu+ couple in the complexes.  相似文献   

18.
The transfer of the α-hydroxy-carboxylates of glycolic, lactic, mandelic and gluconic acid from the aqueous electrolyte phase into an organic 4-(3-phenylpropyl)-pyridine (PPP) phase is studied at a triple-phase boundary electrode system. The tetraphenylporphyrinato complex MnTPP dissolved in PPP is employed to drive the anion transfer reaction and naphthalene-2-boronic acid (NBA) is employed as a facilitator. In the absence of a facilitator, the ability of α-hydroxy-carboxylates to transfer into the organic phase improves, consistent with hydrophobicity considerations giving relative transfer potentials (for aqueous 0.1 M solution) of gluconate>glycolate>lactate>mandelate. In the presence of NBA, a shift of the reversible transfer potential to more negative values is indicating fast reversible binding (the mechanism for the electrode process is EICrev) and the binding constants are determined as K glycolate = 2 M−1, K mandelate = 60 M−1, K lactate = 130 M−1 and K gluconate = 2,000 M−1. The surprisingly strong interaction for gluconate is rationalised based on secondary interactions between the gluconate anion and NBA.  相似文献   

19.
Summary Manganese(III) acetate was prepared by the electrolytic oxidation of Mn(OAc)2 in aqueous AcOH. The electro-generated manganese(III) species was characterised by spectroscopic and redox potential studies. The kinetics of oxidation of pyridoxine (PRX) by manganese(III) in aqueous AcOH were investigated and is first order with respect to [MnIII]. The effects of varying [MnIII], [PRX], added manganese(II), pH and added anions such as AcO, F, Cl and ClO inf4 sup− and SO inf4 sup2− were studied. The rate decreased slowly with increasing [H+] up to 0.2 mol dm−3 and increased steeply thereafter. The orders in [PRX] and [MnII] were unity and inverse fractional, respectively, in both low and high [H+] ranges. The dependence of reaction rate on temperature was studied and activation parameters were computed from Arrhenius and Eyring plots. A mechanism consistent with the observed results is proposed and discussed.  相似文献   

20.
Summary RhIII-catalysed oxidation of 1,2-glycols by acid bromate was studied in the presence of Hg(OAc)2 at 40°C. The order is zero with respect to [BrO 3 ] and unity in [RhIII] and in [glycol]. The oxidation rate is unaffected by variation in [H+] and added salts. Stoichiometric studies indicate that one mole of bromate consumes three moles of glycol giving the corresponding carbonyl compounds. A suitable mechanism involving direct reaction between RhIII and glycol to give product,via hydride ion abstraction by RhIII, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号