首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-channel recombination and separation of the photochemically created singlet radical pair is investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance between the radicals. The quantum yields of the singlet and triplet products and the free radicals production are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin conversion and contact exchange interaction. The general analytical expressions for the quantum yields are specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to the hyperfine coupling constant.  相似文献   

2.
The physical factors governing the magnetic coupling between two magnetic sites are analyzed and quantified as functions of the length of the bridging conjugated ligand. Using wave-function-theory based ab initio calculations, it has been possible to separate and calculate the various contributions to the magnetic coupling, i.e. the direct exchange, the spin polarization and the kinetic exchange. It is shown in model systems that while the Anderson mechanism brings the leading contribution for short-length ligands, the spin polarization dominates the through-long-ligand couplings. Since the spin polarization decreases more slowly than the kinetic exchange, highly spin polarizable bridging ligands would generate a good magneto-communication between interacting magnetic units.  相似文献   

3.
采用量子化学abinitio法对具有甲氧基的碳、氧双自由基邻、间、对二甲氧基亚甲基苯及衍生物体系基态自旋耦合规律进行研究,得到非平面共轭体系中自由基之间磁性耦合的拓朴规则:共轭体系中,两个自由基之间以偶数个碳原子耦合,则有效交换积分J~i~j<0,体系具有低自旋基态;两个自由基之间以奇数个碳原子耦合,则J~i~j>0,体系具有高自旋基态。自由基性质对自旋耦合的影响较大,正离子自由基间磁性耦合能力较强,这些结论为有机磁性材料的分子设计与实验合成提供了理论依据。  相似文献   

4.
Muon spin precession signals arising from both muonium and a diamagnetic muon species have been studied in single crystal of ice over the temperature range 90–263 K. Conversion of initial signal amplitudes to fractions of muon polarization reveals that for temperatures above 200 K part of the original muon polarization is unaccounted for. Such a missing fraction is well known for liquid water. but was not found in earlier work on polycrystalline ice. Muonium signals in Polycrystalline ice were reanalyzed using a non-exponential decay function appropriate to the powder pattern spectrum. Smaller muonium fractions were found. consistent with those determined for single crystall, thus confirming the existence of the missing fraction. The origin of the missing fraction is discussed, and it is proposed that non-reactive spin exchange encounters between muonium and hydrogen atoms may be the cause.  相似文献   

5.
焦克芳 《化学教育》2001,22(Z1):9-12
本文从分析电子自旋磁矩 (磁极 )的空间性质入手,讨论了电子的可区分性。通过讨论2个电子自旋组态的 8种形式,其中,包括 4种磁极吸引的耦合态、4种磁矩排斥的非耦合态,同理,电子轨旋运动也存在 4种耦合态。自旋耦合、轨旋全耦合需要 8个电子,所以元素周期性为 8音律。磁矩耦合是形成化学键的第一要求,第二才是异核吸引作用 ;化学键的广义表达语言应该是:化学键只能由磁矩耦合的电子组成。对电子的波粒二象性和测不准原理进行了新的理论解释,并讨论了波粒二象性和测不准现象的物理模型。该模型与电子的微观可区分性相一致。  相似文献   

6.
The magnetic anisotropy of the supramolecular [2 x 2] grid [Co(II)4L4]8+, with a bis(bipyridyl)-pyrimidine-based ligand L, was investigated by single-crystal magnetization measurements at low temperatures. The magnetization curves exhibit metamagnetic-like behavior and are explained by the weak-exchange limit of a minimal spin Hamiltonian including Heisenberg exchange, easy-axis ligand fields, and the Zeeman term. It is also shown that the magnetic coupling strength can be varied by the substituent R1 in the two-position on the central pyrimidine group of the ligand L.  相似文献   

7.
It is well-known that the azido bridge gives rise antiferromagnetic (AF) or ferromagnetic (F) coupling depending on its coordination mode, namely end-to-end or end-on, respectively. The aim of the present work is to analyse the factors contributing to this different magnetic behaviour. The difference dedicated configuration interaction (DDCI) method is applied to several binuclear Cu(II) azido-bridged models with both types of coordination. In end-on complexes, the direct exchange and the spin polarisation contributions are found to be responsible for the ferromagnetic coupling. In end-to-end complexes, both the direct exchange and the spin polarisation are small and the leading term is the antiferromagnetic dynamical polarisation contribution. The most relevant physical effects are included in the DDCI calculations so that good quantitative agreement is reached for the coupling constant as well as the spin densities.  相似文献   

8.
Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to (1)H in water, and thus result in large DNP enhancement of (1)H NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the (14)N nuclei (or (15)N) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on (1)H NMR signal enhancement of water by means of (14)N as well as (15)N isotope enriched nitroxide radicals.  相似文献   

9.
《Polyhedron》2007,26(9-11):2065-2068
A giant spin Hamiltonian is often used to describe the low temperature magnetic behavior in single-molecule magnets (SMMs). By addressing only the ground state multiplet, the Hilbert space is reduced significantly allowing for numerical simulation of a wide body of experimental data. Analysis of the [Ni(hmp)(dmb)Cl]4 SMM using the giant spin model is compared to a four-ion model which addresses the local anisotropy associated with each of the magnetic Ni2+ ions, as well as the isotropic Heisenberg coupling between these ions. Higher-order giant spin Hamiltonian parameters that are absent in the individual ion parameterization appear when exchange coupling between the Ni2+ ions is introduced. Thus, a parameterization under the giant spin approximation is not purely a measure of anisotropic spin–orbit coupling, but instead a combination of interactions. Furthermore, the obtained parameters do not provide adequate insights into the physical processes within a SMM.  相似文献   

10.
We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.  相似文献   

11.
Field LM  Lahti PM 《Inorganic chemistry》2003,42(23):7447-7454
1-(4-(N-tert-Butyl-N-aminoxylphenyl))-1H-1,2,4-triazole (NIT-Ph-Triaz) forms isostructural cyclic 2:2 dimeric complexes with M(hfac)(2), M = Mn, Ni, Co, hfac = hexafluoroacetylacetonate. For M = Cu, only a sufficient sample for crystallographic analysis was isolated. For M = Mn, Ni, and Co, the M-NIT exchange is strongly antiferromagnetic. The intradimer exchange coupling between M-NIT units is J/k = +0.53 K for M = Mn, J/k = (-)3.5 K for M = Ni. For M = Co, J/k < 0 K, with the magnetic susceptibility tending toward zero at low temperatures. The exchange behavior is consistent with an intradimer spin polarization mechanism linking M-NIT units through the conjugated pi-system of the radical. Computational modeling of NIT-Ph-Triaz gives Mulliken spin populations in good accord with experimental electron spin resonance hyperfine coupling constants, and is consistent with the presumed radical spin density distribution in the complexes. The results provide useful guidelines to anticipate spin polarization effects in organic pi-radical building blocks in magnetic materials, particularly when qualitative connectivity-based analyses are clouded by nonalternant molecular connectivities.  相似文献   

12.
Two new isostructural layered oxohalides FeTe(3)O(7)X (X = Cl, Br) were synthesized by chemical vapor transport reactions, and their crystal structures and magnetic properties were characterized by single-crystal X-ray diffraction, Raman spectroscopy, magnetic susceptibility and magnetization measurements, and also by density functional theory (DFT) calculations of the electronic structure and the spin exchange parameters. FeTe(3)O(7)X crystallizes in the monoclinic space group P2(1)/c with the unit cell parameters a = 10.7938(5), b = 7.3586(4), c = 10.8714(6) ?, β = 111.041(5)°, Z = 4 for FeTe(3)O(7)Cl, and a = 11.0339(10), b = 7.3643(10), c = 10.8892(10) ?, β = 109.598(10)°, Z = 4 for FeTe(3)O(7)Br. Each compound has one unique Fe(3+) ion coordinating a distorted [FeO(5)] trigonal bipyramid. Two such groups share edges to form [Fe(2)O(8)] dimers that are isolated from each other by Te(4+) ions. The high-temperature magnetic properties of the compounds as well as spectroscopic investigations are consistent with an isolated antiferromagnetic spin dimer model with almost similar spin gaps of ~35 K for X = Cl and Br, respectively. However, deviations at low temperatures in the magnetic susceptibility and the magnetization data indicate that the dimers couple via an interdimer coupling. This interpretation is also supported by DFT calculations which indicate an interdimer exchange which amounts to 25% and 10% of the intradimer exchange for X = Cl and Br, respectively. The magnetic properties support the counterion character and a weak integration of halide ions into the covalent network similar to that in many other oxohalides.  相似文献   

13.
We have theoretically designed five different m-phenylene coupled high-spin bis-heteroverdazyl diradicals and their analogous p-phenylene coupled low-spin positional isomers. The geometry-based aromaticity index, harmonic oscillator model of aromaticity (HOMA) values for both the couplers (local HOMA), and the whole diradicals (global HOMA) have been calculated for all the diradicals. We also qualitatively relate these HOMA values with the intramolecular magnetic exchange coupling constants (J), calculated using a broken symmetry approach within unrestricted density functional theory framework. Structural aromaticity index HOMA of linkage specific benzene rings in our designed diradical systems shows that the aromatic character depends on the planarity of the molecule and it controls the sign and magnitude of J. The predicted J values are explained on the basis of spin polarization maps, average dihedral angles, and magnetic orbitals. The effect of the spin leakage phenomenon on magnetic exchange coupling constant and that on HOMA values of certain phosphaverdazyl systems has been explicitly discussed. In addition, a similar comparison is made between the calculated exchange coupling constants and corresponding HOMA values. The main novelty of this work stands on the consideration of the aromatic behavior by means of the geometrical index HOMA. We also estimate another aromaticity index, nucleus independent chemical shift (NICS) values for the phenylene coupler in each diradical to measure aromaticity and compare its value with that of HOMA. The ground state stabilities of these diradicals have also been compared.  相似文献   

14.
Pinching molecules via chemical strain suggests intuitive consequences, such as compression at the pinched site and clothespin‐like opening of other parts of the structure. If this opening affects two spin centers, it should result in reduced communication between them. We show that for naphthalene‐bridged biscobaltocenes with competing through‐space and through‐bond pathways, the consequences of pinching are far less intuitive: despite the known dominance of through‐space interactions, the bridge plays a much larger role for exchange spin coupling than previously assumed. Based on a combination of chemical synthesis, structural, magnetic, and redox characterization, and a newly developed theoretical pathway analysis, we can suggest a comprehensive explanation for this non‐intuitive behavior. These results are of interest for molecular spintronics, as naphthalene‐linked cobaltocenes can form wires on surfaces for potential spin‐only information transfer.  相似文献   

15.
Crystal structures, magnetic and thermodynamic properties of the spin-crossover compound tris(2-picolylamine)iron(II) dichloride (with 2-propanol solvent molecules) have been measured in the temperature range from 15 to 293 K. X-ray diffraction, SQUID, and calorimetric experiments all showed two first-order phase transitions with hysteresis loops, a narrow one at T(1) approximately 196 K and a broad, triangular one covering the range 153相似文献   

16.
The magnetic oxides NaFeP(2)O(7) and LiFeP(2)O(7), made up of FeO(6) octahedra containing high-spin Fe(3+)(d(5)) ions, undergo a three-dimensional antiferromagnetic ordering at low temperatures. The strengths of various Fe-O...O-Fe super-superexchange interactions of NaFeP(2)O(7) and LiFeP(2)O(7) were estimated on the basis of spin dimer analysis to probe the nature of their ordered magnetic structures. It is found that the critical factor governing the strength of a Fe-O...O-Fe super-superexchange interaction is not the Fe...Fe distance but the O...O distance. Using the spin exchange parameters thus obtained, the total spin exchange interaction energies were calculated for various ordered spin arrangements of NaFeP(2)O(7) and LiFeP(2)O(7) on the basis of classical spin analysis to confirm that the observed magnetic structures are the magnetic ground states.  相似文献   

17.
A gauge transformation of the vector potential A(m(I) ), associated to the magnetic dipole m(I) of nucleus I in a molecule, has been studied. The conditions for gauge invariance of nuclear magnetic shielding, nuclear spin/electron orbit contribution to spin-spin coupling between two nuclei, I and J, and electronic current density induced by m(I), have been expressed via quantum mechanical sum rules that are identically satisfied for exact and optimal variational wavefunctions. It is shown that separate diamagnetic and paramagnetic contributions to the properties transform into one another in the gauge transformation, whereas their sum is invariant. Therefore, only total response properties have a physical meaning. In particular, the disjoint diamagnetic and paramagnetic components of nuclear spin/electron orbit contributions to coupling constants are not uniquely defined. The diamagnetic contribution to the nuclear spin-spin coupling tensor, evaluated as an expectation value in the Ramsey theory, can alternatively be expressed as a sum-over-states formula, by rewriting the second-order Hamiltonian in commutator form a? la Geertsen, as previously reported by Sauer. Other sum-over-states formulae are obtained via a gauge transformation, by a procedure formally allowing for a continuous translation of the origin of the m(I)-induced current density, analogous to those previously proposed for magnetizabilities and nuclear magnetic shielding.  相似文献   

18.
胡宗超  卫海燕  王凡  赵琦华  陈志达 《化学学报》2004,62(20):1973-1980,F005
用密度泛函理论结合对称性破损方法(DFF-BS)研究了混合桥联三核镍配合物的磁交换耦合作用.这类化合物是由三唑和异硫氰酸根桥联形成的混合桥配合物.计算表明,在标题化合物中,三唑桥传递反铁磁耦合作用,而异硫氰酸根桥传递铁磁耦合作用;并且,随着异硫氰酸根取代三唑桥的数目增加,配合物的铁磁作用增强,在一定意义上说明了混合桥磁耦合作用的加合性.Mulliken自旋布居分析表明,无论是三唑桥还是异硫氰酸根桥,它们的磁交换作用机理都是磁中心的自旋离域.分子磁轨道分析显示,对于三唑桥,在局域磁轨道之间存在着强的轨道作用,导致了反铁磁耦合;对于异硫氰酸根桥,局域磁轨道之间弱的相互作用,表现了铁磁耦合作用.对标题化合物的研究说明了DFF-BS方法可用于三核体系磁交换作用的研究.  相似文献   

19.
Pinching molecules via chemical strain suggests intuitive consequences, such as compression at the pinched site and clothespin-like opening of other parts of the structure. If this opening affects two spin centers, it should result in reduced communication between them. We show that for naphthalene-bridged biscobaltocenes with competing through-space and through-bond pathways, the consequences of pinching are far less intuitive: despite the known dominance of through-space interactions, the bridge plays a much larger role for exchange spin coupling than previously assumed. Based on a combination of chemical synthesis, structural, magnetic, and redox characterization, and a newly developed theoretical pathway analysis, we can suggest a comprehensive explanation for this non-intuitive behavior. These results are of interest for molecular spintronics, as naphthalene-linked cobaltocenes can form wires on surfaces for potential spin-only information transfer.  相似文献   

20.
Unusual spin coupling between Mo(III) and Mn(II) cyano-bridged ions in bimetallic molecular magnets based on the [Mo(III)(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo(III), the ground state of the pentagonal-bipyramidal [Mo(III)(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo(III)-CN-Mn(II) superexchange interaction is extremely anisotropic: it is described by an Ising-like spin Hamiltonian JS(z)(Mo) S(z)(Mn) for the apical pairs and by the J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn)) spin Hamiltonian for the equatorial pairs (in the latter case J(z) and J(xy) can have opposite signs). This anisotropy resulted from an interplay of several Ising-like (Sz(Mo) Sz(Mn)) and isotropic (S(Mo)S(Mn)) ferro- and antiferromagnetic contributions originating from metal-to-metal electron transfers through the pi and sigma orbitals of the cyano bridges. The Mo(III)-CN-Mn(II) exchange anisotropy is distinct from the anisotropy of the g-tensor of [Mo(III)(CN)(7)](4-); moreover, there is no correlation between the exchange anisotropy and g-tensor anisotropy. We indicate that highly anisotropic spin-spin couplings (such as the Ising-like JS(z)(Mo) S(z)(Mn)) combined with large exchange parameters represent a very important source of the global magnetic anisotropy of polyatomic molecular magnetic clusters. Since the total spin of such clusters is no longer a good quantum number, the spin spectrum pattern can differ considerably from the conventional scheme described by the zero-field splitting of the isotropic spin of the ground state. As a result, the spin reorientation barrier of the magnetic cluster may be considerably larger. This finding opens a new way in the strategy of designing single-molecule magnets (SMM) with unusually high blocking temperatures. The use of orbitally degenerate complexes with a strong spin-orbit coupling (such as [Mo(III)(CN)(7)](4-) or its 5d analogues) as building blocks is therefore very promising for these purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号