首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently introduced a silicon substrate for high-sensitivity microarrays, coated with a functional polymer named copoly(DMA-NAS-MAPS). The silicon dioxide thickness has been optimized to produce a fluorescence intensification due to the optical constructive interference between the incident and reflected lights of the fluorescent radiation. The polymeric coating efficiently suppresses aspecific interaction, making the low background a distinctive feature of these slides. Here, we used the new silicon microarray substrate for allergy diagnosis, in the detection of specific IgE in serum samples of subjects with sensitizations to inhalant allergens. We compared the performance of silicon versus glass substrates. Reproducibility data were measured. Moreover, receiver-operating characteristic (ROC) curves were plotted to discriminate between the allergy and no allergy status in 30 well-characterized serum samples. We found that reproducibility of the microarray on glass supports was not different from available data on allergen arrays, whereas the reproducibility on the silicon substrate was consistently better than on glass. Moreover, silicon significantly enhanced the performance of the allergen microarray as compared to glass in accurately identifying allergic patients spanning a wide range of specific IgE titers to the considered allergens.  相似文献   

2.
We present the first monolithically integrated silicon/glass liquid chromatography-electrospray ionization microchip for mass spectrometry. The microchip is fabricated by bonding a silicon wafer, which has deep reactive ion etched micropillar-filled channels, together with a glass lid. Both the silicon channel and the glass lid have a through-wafer etched sharp tip that produces a stable electrospray. The microchip is also compatible with laser induced fluorescence (LIF) detection, due to the glass lid. Separation of drugs in less than 5 minutes using either SiO(2) (normal phase) or C(18) coated (reversed-phase) pillars with good sensitivity was demonstrated with mass spectrometric detection as well as separation of fluorescent compounds with LIF detection.  相似文献   

3.
The catalytic performance of porous silicon (PS) micro enzyme reactors (muIMER) is strongly dependent on the PS matrix morphology for enzyme immobilisation. PS was achieved in the muIMER by anodisation in a HF-ethanol mixture. PS etching of structured silicon surfaces commonly results in an inhomogeneous pore formation. The deep channel microreactors described herein have previously suffered from these phenomena, yielding non-optimised muIMERs. In order to obtain a homogeneous PS layer on the deep microreactor channel walls, different reactor geometries (channel wall thicknesses of 50 and 75 mum) were anodised at 10 and 50 mA cm(-2) for anodisation times ranging between 0 and 50 min. The muIMERs were evaluated by immobilising two types of enzymes, glucose oxidase (GOx) and trypsin, and the resulting catalytic turnover was monitored by a colorimetric assay. It was found that reactors with a homogeneous PS matrix displayed improved performance. The trypsin muIMERs were used to digest a protein, beta-casein, in an on-line format and the digest was analysed by MALDI-TOF MS. The importance of tailoring the muIMER geometry and the PS-matrix is crucial for the protein digestion. Successful protein identification after only 12 s. digestion was demonstrated for the best reactor, 75 mum channel wall, 25 mum channel width, anodised at 50 mA cm(-2) for 10 min.  相似文献   

4.
With a view to developing an economical and elegant biosensor chip, we compared the efficiencies of biosensors that use gold-coated single-crystal silicon and amorphous glass substrates. The reflectivity of light over a wide range of wavelengths was higher from gold layer coated single-crystal silicon substrates than from glass substrates. Furthermore, the efficiency of reflection from gold layers of two different thicknesses was examined. The thicker gold layer (100 nm) on the single-crystal silicon showed a higher reflectivity than the thinner gold film (10 nm). The formation of a nucleic acid duplex and aptamer–ligand interactions were evaluated on these gold layers, and a crystalline silicon substrate coated with the 100-nm-thick gold layer is proposed as an alternative substrate for studies of interactions of biomolecules.  相似文献   

5.
Microchip capillary electrophoresis (CE) with integrated four-electrode capacitively coupled conductivity detection is presented. Conductivity detection is a universal detection technique that is relatively independent on the detection pathlength and, especially important for chip-based analysis, is compatible with miniaturization and on-chip integration. The glass microchip structure consists of a 6 cm etched channel (20 microm x 70 microm cross section) with silicon nitride covered walls. In the channel, a 30 nm thick silicon carbide layer covers the electrodes to enable capacitive coupling with the liquid inside the channel as well as to prevent interference of the applied separation field. The detector response was found to be linear over the concentration range from 20 microM up to 2 mM. Detection limits were at the low microM level. Separation of two short peptides with a pI of respectively 5.38 and 4.87 at the 1 mM level demonstrates the applicability for biochemical analysis. At a relatively low separation field strength (50 V/cm) plate numbers in the order of 3500 were achieved. Results obtained with the microdevice compared well with those obtained in a bench scale CE instrument using UV detection under similar conditions.  相似文献   

6.
A one-dimensional assembly of gold nanoparticles chemically bonded to pi-conjugated porphyrin polymers was prepared on a chemically modified glass surface and on an undoped naturally oxidized silicon surface by the following methods: pi-conjugated porphyrin polymers were prepared by oxidative coupling of 5,15-diethynyl-10,20-bis-((4-dendron)phenyl) porphyrin (6), and its homologues (larger than 40-mer) were collected by analytical gel permeation chromatography (GPC). The porphyrin polymers (>40-mer) were deposited using the Langmuir-Blodgett (LB) method on substrate surfaces, which were then soaked in a solution of gold nanoparticles (2.7 +/- 0.8 nm) protected with t-dodecanethiol and 4-pyridineethanethiol. The topographical images of the surface observed by tapping mode atomic force microscopy (AFM) showed that the polymers could be dispersed on both substrates, with a height of 2.8 +/- 0.5 nm on the modified glass and 3.1 +/- 0.5 nm on silicon. The height clearly increased after soaking in the gold nanoparticle solution, to 5.3 +/- 0.5 nm on glass and 5.4 +/- 0.7 nm on silicon. The differences in height (2.5 nm on glass and 2.3 nm on silicon) corresponded to the diameter of the gold nanoparticles bonded to the porphyrin polymers. The distance between gold nanoparticles observed in scanning electron microscopic images was ca. 5 nm, indicating that they were bonded at every four or five porphyrin units.  相似文献   

7.
Two-dimensional micropatterns of microparticles were fabricated on glass substrates with negative dielectrophoretic force, and the patterned microparticles were covalently bound on the substrate via cross-linking agents. The line and grid patterns of microparticles were prepared using the repulsive force of negative dielectrophoresis (n-DEP). The template interdigitated microband array (IDA) electrodes (width and gap 50 mum) were incorporated into the dielectrophoretic patterning cell with a fluidic channel. The microstructures on the glass substrates with amino or sulfhydryl groups were immobilized with the cross-linking agents disuccinimidyl suberate (DSS) and m-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS). Diaphorase (Dp), a flavoenzyme, was selectively attached on the patterned microparticles using the maleimide groups of MBS. The enzyme activity on the patterned particles was electrochemically characterized with a scanning electrochemical microscope (SECM) in the presence of NADH and ferrocenylmethanol as a redox mediator. The SECM images proved that Dp was selectively immobilized onto the surface of microparticles to maintain its catalytic activity.  相似文献   

8.
Oxidised porous silicon samples prepared from highly and weakly doped p-type silicon substrates, have been functionalised with calix[4]arene (CA) molecules. They have been used for sodium detection as electrolyte/insulator/silicon (EIS) structures. An over Nernstian behaviour was observed and correlated with physical parameters of porous silicon samples (porosity, resistivity). A generalised Nernstian equation was proposed in order to describe this property. CA functionalised EIS structures based on porous silicon present higher lifetime compared to flat structures.  相似文献   

9.
Nakane J  Akeson M  Marziali A 《Electrophoresis》2002,23(16):2592-2601
In an effort to increase throughput and decrease the cost of electrophoretic separation of DNA and proteins, various groups are developing highly parallel, miniaturized separation devices based on capillaries etched into silicon, glass or plastic substrates. To date, these miniaturized devices have relied on optical detectors, thus placing a lower limit on instrument size, and complicating the incorporation of an entire DNA analyzer instrument on a chip. To address this limitation, we are evaluating nanopores as candidate Coulter counters for purely electronic detection of analytes in miniaturized electrophoresis and similar separation devices. To establish feasibility of this detection scheme, we have investigated the detection sensitivity of a nanopore sensor through experiments with the alpha-hemolysin (alpha-HL) ion channel, and through a Monte Carlo (MC) model of polymer capture rate with a cylindrical nanopore under an applied voltage. Experimental and model results are extrapolated to predict the capture rate of synthetic pores operating at higher voltages than presently achievable with protein pores.  相似文献   

10.
Manica DP  Ewing AG 《Electrophoresis》2002,23(21):3735-3743
Two novel methods are described for the fabrication of components for microchip capillary electrophoresis with electrochemical detection (microchip CEEC) on glass substrates. First, rapid marker masking is introduced as a completely nonphotolithographic method of patterning and fabricating integrated thin-film metal electrodes onto a glass substrate. The process involves applying the pattern directly onto the metal layer with a permanent marker that masks the ensuing chemical etch. The method is characterized, and the performance of the resulting electrode is evaluated using catecholamines. The response compares well with photolithographically defined electrodes and exhibits detection limits of 648 nM and 1.02 microM for dopamine and catechol, respectively. Second, laminar flow etching is introduced as a partially nonphotolithographic method of replicating channel networks onto glass substrates. The replication process involves applying a poly(dimethylsiloxane) (PDMS) mold of the channel network onto a slide coated with a sacrificial metal layer and then pulling solutions of metal etchants through the channels to transfer the pattern onto the sacrificial layer. The method is tested, and prototype channel networks are shown. These methods serve to overcome the time and cost involved in fabricating glass-based microchips, thereby making the goal of a disposable high performance lab-on-a-chip more attainable.  相似文献   

11.
A micro fluorescent analysis system is proposed using silicon micromachining. GaN blue light-emitting diode (LED) monolithically integrated on a silicon substrate is used as a light source for the fluorescent analysis system. The blue light suits the excitation of several dyes used commonly in fluorescent analysis. Silicon photodiode (Si-PD) that matches the visible and near infrared fluorescent wavelengths of dyes is integrated on a silicon substrate. Polydimethylsiloxane (PDMS) micro-channels are also stacked for flowing dye-sensitized liquid. Therefore, the proposed system is an integrated system that can be composed on a silicon platform, i.e. a bottom layer of Si-PD, a middle layer of GaN-LED on silicon substrate and a top layer of micro PDMS channel. An aperture is opened into the GaN-LED layer by deep reactive ion etching to create a ring-shaped GaN-LED and a through-hole for detection. The light from the ring-shaped GaN-LED in the middle layer excites the dye-sensitized liquid in the top micro-channel layer. The fluorescence emitted from dye is detected by the Si-PD on the bottom layer at an angle larger than 90 degrees from the direction of excitation. Therefore, the detection optics consist basically of a dark-field illumination optical system. In order to evaluate the performance of the integrated system, fluorescence of fluorescein isothiocyanate (FITC) solution flowing in the micro channel is measured. From the measurement, the noise, sensitivity and limit of detection in the fabricated system are evaluated for FITC dye to be 0.57 pA, 1.21 pA μM(-1) and 469 nM, respectively. From these results, a compact fluorescence analysis system is demonstrated.  相似文献   

12.
A new integrated microchip for liquid chromatography-mass spectrometry (LC-MS) is presented. The chip is made from bonded silicon and glass wafers with structures for a packed LC column channel, a micropillar frit, a channel for optional optical detection, and a heated vaporizer section etched in silicon and platinum heater elements on the glass cover. LC eluent is vaporized and mixed with nebulizer gas in the vaporizer section and the vapor is sprayed out from the chip. Nonpolar and polar analytes can be efficiently ionized in the gas phase by atmospheric pressure photoionization (APPI) as demonstrated with polycyclic aromatic hydrocarbons (PAHs) and selective androgen receptor modulators (SARMs). This is not achievable with present LC-MS chips, since they are based on electrospray ionization, which is not able to ionize nonpolar compounds efficiently. The preliminary quantitative performance of the new chip was evaluated in terms of limit of detection (down to 5 ng mL−1), linearity (r > 0.999), and repeatability of signal response (RSD = 2.6-4.0%) and retention time (RSD = 0.3-0.5%) using APPI for ionization and PAHs as standard compounds. Determination of fluorescent compounds is demonstrated by using laser-induced fluorescence (LIF) for detection in the optical detection channel before the vaporizer section.  相似文献   

13.
UV-patternable organic-inorganic hybrid sol-gel coating was used to develop microchannel on silicon and glass wafers by photolithography processing. The sol-gel coating was formed with 3-methacryloxypropyltrimethoxysilane (MPTS) as photosensitive component and zirconium propoxide as property modifier. In order to enhance the UV light efficiency during photolithography processing for glass substrates, a thin copper layer with thickness of 100–200 nm was deposited on one side of the glass wafer. The closed microchannels were formed by bonding of two developed surface channels of compensating patterns by wafer bonding technology. The bonding material is the same as the channel body ensuring a uniform surface property for the microchannels. A thin layer of about 2 μm was applied on the developed channels by spin coating. The depth of the surface channels on each wafer is about 10–12 μm, and the height of the closed channels is therefore in the range of 22–24 μm. Different microfluidic devices such as chaotic micromixers and microsplitters were fabricated.  相似文献   

14.
Li HF  Lin JM  Su RG  Cai ZW  Uchiyama K 《Electrophoresis》2005,26(9):1825-1833
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.  相似文献   

15.
We describe a microfluidic cytometer that performs simultaneous optical and electrical characterisation of particles. The microfluidic chip measures side scattered light, signal extinction and fluorescence using integrated optical fibres coupled to photomultiplier tubes. The channel is 80 μm high and 200 μm wide, and made from SU-8 patterned and sandwiched between glass substrates. Particles were focused into the analysis region using 1-D hydrodynamic focusing and typical particle velocities were 0.1 ms(-1). Excitation light is coupled into the detection channel with an optical fibre and focused into the channel using an integrated compound air lens. The electrical impedance of particles is measured at 1 MHz using micro-electrodes fabricated on the channel top and bottom. This data is used to accurately size the particles. The system is characterised using a range of different sized polystyrene beads (fluorescent and non-fluorescent). Single and mixed populations of beads were measured and the data compared with a conventional flow cytometer.  相似文献   

16.
Colloidal forces between atomic force microscopy probes of 0.12 and 0.58 N/m spring constant and flat substrates in nanoparticle suspensions were measured. Silicon nitride tips and glass spheres with a diameter of 5 and 15 mum were used as the probes whereas mica and silicon wafer were used as substrates. Aqueous suspensions were made of 5-80 nm alumina and 10 nm silica particles. Oscillatory force profiles were obtained using atomic force microscope. This finding indicates that the nanoparticles remain to be stratified in the intervening liquid films between the probe and substrate during the force measurements. Such structural effects were manifested for systems featuring attractive and weak repulsive interactions of nanoparticles with the probe and substrate. Oscillation of the structural forces shows a periodicity close to the size of nanoparticles in the suspension. When the nanoparticles are oppositely charged to the probes, they tend to coat the probes and hinder probe-substrate contact.  相似文献   

17.
A micromachined flow cell (overall size; 25 x 25 x 1 mm3) was designed for the fast determination of hydrogen peroxide, based on a luminol-H2O2 chemiluminescence reaction catalyzed by immobilized peroxidase (POD). The flow cell consisted of a sandwich of anisotropically etched silicon and glass chips and contained a spiral channel (20 turns, 50 cm long, 150 microm wide, 20 microm depth, channel volume 1.4 microl) and two holes (1 mm diameter). POD was covalently immobilized with 3-(trimethoxysilyl)propyldietylenetriamine and glutaraldehyde on the inner surface of the channel. The chip was placed in front of a window of a photomultiplier tube and used as a flow cell in a single-line flow-injection analysis system using a luminol solution as a carrier solution. The sample volume for one measurement was 0.2 microl. The maximal sampling rate was 315 h(-1) at a carrier solution flow rate of 10 microl min(-1). A calibration graph for H2O2 was linear for 5 nM - 5 microM; the detection limit (signal-to-noise = 3) was 1 nM (7 fg in 0.2 microl injection). The H2O2 concentration in rainwater was determined using this sensor system.  相似文献   

18.
We report that nanostructuring via dip-pen nanolithography can be used for modification of a broad range of different substrates (polystyrene, Teflon, stainless steel, glass, silicon, rubber, etc.) without the need for reconfiguring the underlying printing technology. This is made possible through the use of vapor-based coatings that can be deposited on these substrates with excellent conformity, while providing functional groups for subsequent spatially directed click chemistry via dip-pen nanolithography. Pattern quality has been compared on six different substrates demonstrating that this approach indeed results in a surface modification protocol with potential use for a wide range of biotechnological applications.  相似文献   

19.
Covalently assembled monolayers (CAMs) of Mg-porphyrazine complex on glass and silicon substrates were fabricated and employed as “Turn off” sensor for ppm level detection and degradation of a sulfur mustard analogue: 2-chloroethyl ethyl sulfide (CEES). The detection process was read-out optically via an off-the-shelf UV/Vis spectrophotometer in transmission mode. Monolayer based sensor system was shown to be quite robust and stable, sufficiently accurate and reversible under given experimental conditions. Notably, the sensor system exhibited marked selectivity for CEES when exposed exclusively or in mix to different potent analytes. Moreover, action of KMnO4 on monolayer-CEES complex lead to CEES degradation and resetting of the sensor to its native state for reuse.  相似文献   

20.
The effect of counter-substrate surface energy on macroscale friction of nanofiber array is studied. Low-density polyethylene (LDPE) fibrillar array fabricated from silicon nanowire template is tested against glass substrates modified with various self-assembled monolayers, which exhibit a wide range of surface energy. A large drop in friction over a narrow range of surface energy is observed and explained in terms of drastically reduced number of fibers in actual contact, in addition to the reduced surface energy. The relationship between surface energy and fiber engagement is discussed with Johnson-Kendall-Roberts (JKR) and elastic beam models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号