首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Adsorption of nitrogen on Al-3% La, Al-1.5% Sc, and Al-3% Ce powders before and after processing with water in the relative pressure range p/p s = 10~3 to 0.999 is experimentally studied at a temperature of 78 K. It is shown that the interaction between ultradispersed powder and water depends on the properties of the original powder, including the original content and composition of the oxide-hydroxide phases in the surface layers of metal particles, and the length and conditions of storage. Results confirming that processing powders containing rare-earth metals with water at room temperature leads to the formation of new phases and affects their morphology are presented. It is shown that the nanopores formed between crystallites on the surface of the particles during oxidation with water and subsequent thermal dehydration play an important role in the properties of powders processed with water. The specific surface and the porosity of powders are calculated.  相似文献   

4.
The protectivity of aluminum and its alloys with transition metals   总被引:1,自引:0,他引:1  
The mechanism of the protectivity of aluminum and supersaturated aluminum alloys containing W, Mo, Ta and Cu has been investigated in chloride environments. The potential of zero charge (PZC) of the passive film was evaluated by a method based on impedance spectroscopy. The chloride ion adsorption on the passive film was measured by means of an in situ radiotracer technique. Constituents of the passive film as a function of depth were investigated by means of ex situ spectroscopic techniques including XPS, ISS and SIMS. The PZCs of the passive films of Al and Al alloys were calculated from the flatband potentials. A linear correlation between pitting potential and the PZC was found. Adsorption of the chloride ion on the Al-Ta surface starts at more anodic potentials than those of pure Al, and this shift is in agreement with the anodic shift of the PZC. A constant surface concentration of chloride ion was observed during the induction time for breakdown. A significant de crease of OH concentration in the passive film of Al and its alloys has been found after the passive film has undergone breakdown. The mole fraction of the alloying elements in the surface region of the passive film is ca. 1–8%. The adsorption of the chloride ion on the surface of the passive film is influenced by the anodic PZC shift, which varies with the alloying element. However, retardation of the chloride penetration into the passive film by blocking of the entry site by oxide ions of the alloying element controls the rate of breakdown. Received: 18 November 1996 / Accepted: 17 February 1996  相似文献   

5.
In connection with the development of low-alloyed aluminum alloys, their corrosion-electrochemical behavior was studied in various media.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 8, 2004, pp. 1303–1307.Original Russian Text Copyright © 2004 by Ganiev, Barotov, Inoyatov.  相似文献   

6.
Russian Chemical Bulletin - The ultrafine aluminum powder alloyed with rare-earth metals (Ce, Sm), which is used as a support for the cobalt-containing catalysts of the Fischer-Tropsch synthesis,...  相似文献   

7.
The reaction of C2H5OH and O3 on the singlet potential energy surface is carried out using the MP2 and CCSD(T)//MP2 theoretical approaches in connection with the 6-311++G(d,p) basis set. Three pre-reactive complexes C1, C2, and C3 are formed between ethanol and ozone at atmospheric pressure and 298.15 K temperature. With variety of the complexes, seven types of product are obtained which four types of them have enough thermodynamic stability. In thermodynamic approach, the most favor product begins with the formation of pre-reactive C2 complex and produces the CH3CH(OH)2 + O2 as final adduct in a process that is computed to be exothermic by ?53.759 kcal/mol and spontaneous reaction by ?51.833 kcal/mol in Gibbs free energy. In kinetic viewpoint, the formation of CH3COH + cis-H2O3 as a final adducts is the most favor path.  相似文献   

8.
Kinetic data for the ortho-para conversion of H2 at 77 k rear earth metals (REM) and their Cu alloy films are given. Conversion on the surface of Sc, Y, La, Yb and Lu has been shown previously to follow a chemical mechanism, for the others it is magnetic. When alloyed with Cu, the specific catalytic activity (Ksp) of Sc, Y, La, Yb and Lu sharply increases. A sharp increase of Ksp is also observed on Cu alloys of Ce, Sm, Nd, Pr, Eu and Gd and the chemical conversion mechanism becomes predominant. On Tb, Dy, Er, Ho and Tm, Ksp rises only slightly and the magnetic mechanism preserves.
- H2 77 P3M . , Sc, Y, La, Yb Lu , . Cu () Sc, Y, La, Yb, Lu, Ce, Sm, Nd, Pr, Eu Gd, . Ha Tb, Dy, Er, Ho Tm .
  相似文献   

9.
10.
Oxidation of hydrogen cyanide with ozone on the singlet potential energy surface is carried out using the MP2 and CCSD(T)//MP2 theoretical approaches in connection with the 6-311++G(d,p) basis set. In this reaction, energy barrier of transition states are low, so the reaction of HCN with ozone can occur easily at atmospheric condition. With variety of pre-reactive complex, five types of products are obtained at the MP2 method which four types of them have enough thermodynamic stability at the standard condition. CO2 + HNO are final adducts in a process that is computed to be exothermic by ?132.605 kcal/mol in standard enthalpy and spontaneous by ?144.166 kcal/mol in Gibbs free energy of reaction. In kinetic viewpoint, the production of OCN + HO2 adducts path with one low level transition state is the most favored path.  相似文献   

11.
Strongly bound oxygen separately adsorbed on LCG-M is inert with respect to H2. In catalysis with the simultaneous presence of O2 and H2, a weakly bound (presumably, molecular) form of oxygen participates. Catalytic reaction exerts a protective effect on LCG-M, inhibiting the strong dissociative chemisorption of oxygen.
- H2. , O2 H2, . -, .
  相似文献   

12.
Two series of complexes of meconic acid (H3 Mec) with rare-earths have been prepared by varying the preparative procedure. The compounds have the general formulae, [Ln(Mec) (H2O)2]·3 H2O (whereLn=La, Ce, Pr, Nd, Sm, Ho and Y) and [Ln(HMec) (H2 Mec) (H2O)2]·4 H2O (whereLn=La, Pr, Nd and Sm). The infrared spectral data indicate that the carboxylate groups are bound to the rare-earth metal in a bidentate fashion. Thermal studies indicate that two water molecules are coordinated in each case. The complexes are probably polymeric.
Komplexe von Seltenerd-Metallen mit Meconsäure
Zusammenfassung Es wurden zwei Reihen von Komplexen der Meconsäure (H3 Mec) mit Seltenerd-Metallen mit den allgemeinen Formeln [Ln(Mec)(H2O)2]·3 H2O (Ln=La, Ce, Pr, Nd, Sm, Ho, Y) und [Ln(HMec)2(H2 Mec) (H2O)2]·4 H2O (Ln=La, Pr, Nd, Sm) hergestellt. Die IR-Spektren zeigen, daß die Carboxylat-Gruppen in zweizähniger Weise mit den Metallionen koordinieren; thermische Untersuchungen ergeben, daß in beiden Reihen jeweils zwei Wassermoleküle zusätzlich koordiniert sind. Die Komplexe weisen wahrscheinlich eine Polymerstruktur auf.
  相似文献   

13.
It was shown that the method of anodization of aluminum and aluminum alloys can be applied for subsequent plating of highly adherent copper coating instead of the known zincate treatment with additional annealing. Fluorine-containing additives in anodizing electrolyte were proposed as activator of oxide film. The parameters of the anodic film (thickness, porosity, and microroughness) were calculated. The plated quality copper coatings have high adhesion to the aluminum support, and no additional heat treatment is required. This considerably reduces the processing time for deposition of multilayer coatings and decreases the material costs.  相似文献   

14.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

15.
Oxidation of polyethylene (PE) melts in contact with metals (Cu, Pb, Au, Al, Zn, Ag) has been studied by infrared spectroscopy and differential thermal analysis (DTA). These metals may be divided into two groups, depending on their activity for oxidizing PE: namely, high-activity metals (Cu, Pb, Ag, Zn) and low-activity metals (Al, Au). During the oxidation of PE in contact with high-activity metals dissolution of the surface layer of metal is observed with accumulation of metal-containing compounds (salts of carboxylic acids) in the bulk of the polymer. With low-activity metals these phenomena are not observed. The rate of oxidation of PE on low-activity metals approaches the oxidation rate of nonmetals (polytetrafluoroethylene and inorganic glass). With certain high-activity metals (Cu, Pb) the process of oxidation is accelerated only in the early stage of oxidation; then the oxidation rate slows down and the oxidation process ceases. PE films separated from metal after being oxidized on it possess chemical memory, i.e., their oxidation rate depends on the nature of the metal with which they had been in contact, and on the duration of the contact oxidation. The effect of salts of carboxylic acids (metal stearates) on the oxidation of PE melts was also studied. Based on the data obtained, it is concluded that the rate of oxidation of PE melts on high-activity metals is controlled by metal-containing compounds which are the products of contact reactions.  相似文献   

16.
Metallic materials for application at high temperatures must form a slowly growing, dense oxide scale for their own protection. Up to about 1000°C, chromia-forming, at higher temperatures, alumina-forming Fe, Ni or Co based materials are used. In the present paper it is demonstrated how intact homogeneous scales on materials can be studied by AES sputter profiling and SNMS, but the main objective is to show phenomena at surfaces and interfaces which occur in complex atmospheres. In complex atmospheres, the formation of a protective scale is aggravated if several aggressive components of the gas atmosphere attack the free metal surface. This was demonstrated by AES for oxidizing and chlorinating atmospheres, in which chlorides and oxides grow simultaneously on the free metal surface. The chlorides are overgrown after some minutes by the stable oxide, but the formation of a dense, protective oxide scale is prevented. Similar effects have been observed by AES in oxidizing and nitriding atmospheres and also in oxidizing and sulfidizing atmospheres. The structure and the composition of the interface oxide/metal is decisive for the adherence of oxide scales. Stresses in the oxide scale can initiate detachment, diffusion processes in the alloy can lead to formation of voids and cavities beneath the oxide layer; both processes are favoured by segregation of sulfur from the alloy to the nascent metal surface as was shown by AES. For the investigation of the interface, this has to be laid bare by in-situ bending of the sample; this causes physical removal of the oxide scale. In addition to the surface of the oxide and the interface oxide/metal, grain boundaries of the alloys are also of interest; at these grain boundaries, dissolved non-metal atoms such as C, O, N, S ... can penetrate into the alloy. The grain boundaries can be analyzed by AES if the samples are fractured inside the UHV system. It can be shown, for example, that oxygen can penetrate into the grain boundaries of the intermetallic compounds NbAl3 and NiAl; this oxygen penetration leads to grain boundary oxidation or even disintegration of the material into fine oxidized metal particles. These examples should demonstrate that the application of surface analytical methods, especially of AES, can provide valuable information for improved understanding and control of the high temperature corrosion of metallic materials.  相似文献   

17.
The interaction of rare-earth metals (Pr, Nd, Sm, Y, Er, and Yb) with selenium at Ln: Se = 1: 2, 2: 3, 3: 4, and 1: 1 under polythermal (293–1270 K) and isothermal (770 and 1170 K) heat treatment conditions was studied by differential thermal and X-ray powder diffraction analyses. While heating the reaction mixture, the exothermic events in the interaction between elements occur within the temperature ranges 620–750 K (Pr), 580–870 K (Sm), and 620–920 K (Er). X-ray powder diffraction analysis detected the formation of the following phases in the homogeneous state: at 770 K, LnSe2 and Yb2Se3, and at 1170 K, Ln3Se4, Ln2Se3, and YbSe. Scanning electron microscopy showed that particles of the selenide phases are formed by 1 × 2–5-μm fragments, which constitute a spongy structure of agglomerates tens to hundreds of micrometers in size.  相似文献   

18.
19.
Tertiary-amyl methyl ether (TAME) is proposed for use as an additive to increase the oxygen content of gasoline as stipulated in the 1990 Clean Air Amendments. The present experiments have been performed to examine the kinetics and mechanisms of the atmospheric removal of TAME. The kinetics of the reaction of OH with TAME was examined by using a relative rate technique in which photolysis of methyl nitrite or nitrous acid was used as the source of OH. The OH rate constant for TAME and two major products (t-amyl formate and methyl acetate) were measured and yields for ten products were determined as primary products from the reaction. Values determined for the rate constants for the reaction with OH were 5.48 × 10?12 (TAME), 1.75 × 10?12 (t-amyl formate), and 3.85 × 10?13 cm3 molec?1 s?1 (methyl acetate) at 298 ± 2 K. The primary products (with corrected yields where required) from the OH + TAME that have been observed include (1) t-amyl formate (0.366), methyl acetate (0.349), acetaldehyde (0.43, corrected), acetone (0.036), formaldehyde (0.549), t-amyl alcohol (0.026), 3-methyoxy-3-methyl-butanal (0.044, corrected), t-amyloxy methyl nitrate (0.029), 3-methyoxy-3-methyl-2-butyl nitrate (0.010), and 2-methoxy-2-methyl butyl nitrate (0.004). Mechanisms leading to these products involve OH abstraction from each of the four different hydrogen atoms of TAME. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Ethyl tertiary butyl ether (ETBE) is being proposed as an additive for use in reformulated gasolines. In this study, experiments were performed to examine the kinetics and mechanism of the atmospheric removal of ETBE. The kinetics of the reaction of ETBE with OH radicals were examined by using a relative rate technique with the photolysis of methyl nitrite to generate OH radicals. With n-hexane as the reference compound, a value of (9.73 ± 0.33) × 10?12 cm3 molecule?1 s?1 was obtained for the rate constant. The OH rate constant for t-butyl acetate, a product of the oxidation of ETBE, was (4.4 ± 0.4) × 10?13 cm3 molecule?1 s?1 at 298 K. The primary products and molar yields for the OH reaction with ETBE in the presence of NOx were t-butyl formate (0.64 ± 0.03), t-butyl acetate (0.13 ± 0.01), ethyl acetate (0.043 ± 0.003), acetaldehyde (0.16 ± 0.01), acetone (0.019 ± 0.002), and formaldehyde (0.53 ± 0.04). Under the described reaction conditions, the formation of t-butyl nitrite was also observed. From these molar yields, approximately 98% of the reacted ETBE could be accounted for by paths leading to these products. Chemical mechanisms to explain the formation of these products are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号