首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ZnO filler has been introduced into a solid polymeric electrolyte of polyvinyl chloride (PVC)–ZnO–LiClO4, replacing costly organic filler for conductivity improvement. Ionic conductivity of PVC–ZnO–LiClO4 as a function of ZnO concentration and temperature has been studied. The electrolyte samples were prepared by solution casting technique. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with ZnO concentration and temperature. The temperature dependence on the conductivity of electrolyte was modelled by Arrhenius and Vogel–Tammann–Fulcher equations, respectively. The temperature dependence on the conductivity does not fit in both models. The highest room temperature conductivity of the electrolyte of 3.7 × 10−7 Scm−1 was obtained at 20% by weight of ZnO and that without ZnO filler was found to be 8.8 × 10−10 Scm−1. The conductivity has been improved by 420 times when the ZnO filler was introduced into the PVC–LiClO4 electrolyte system. It was also found that the glass transition temperature of the electrolyte PVC–ZnO–LiClO4 is about the same as PVC–LiClO4. The increase in conductivity of the electrolyte with the ZnO filler was explained in terms of its surface morphology.  相似文献   

2.
In this paper, we studied the enhancement of the breakdown voltage in the 4H–SiC MESFET–MOSFET (MES–MOSFET) structure which we have proposed in our previous work. We compared this structure with Conventional Bulk-MOSFET (CB-MOSFET) and Field plated Conventional Bulk-MOSFET (FCB-MOSFET) structures. The 4H–SiC MES–MOSFET structure consists of two additional schottky buried gates which behave like a Metal on Semiconductor (MES) at the interface of the active region and substrate. The motivation for this structure was to enhance the breakdown voltage by introducing a new technique of utilizing the reduced surface field (RESURF) concept. In our comparison and investigation we used a two-dimensional device simulator. Our simulation results show that the breakdown voltage of the proposed structure is 3.7 and 2.9 times larger than CB-MOSFET and FCB-MOSFET structures, respectively. We also showed that the threshold voltage and the slope of drain current (ID) as a function of drain–source voltage (VDS) for all the structures is the same.  相似文献   

3.
Physics of the Solid State - We studied Young’s modulus and internal friction of the V–4Ti–4Cr alloy with different hydrogen impurity concentrations in the temperature range of...  相似文献   

4.
Optics and Spectroscopy - Spontaneous and stimulated emissions of Xe2Cl* triplex molecules upon excitation of Xe–CCl4 gas mixtures with a low CCl4 content by a pulsed high-energy electron...  相似文献   

5.
Ti–6Al–4V (Ti64) plates were subjected to rolling at 600°C and 800°C, respectively, for reductions up to 90% reduction in thickness. The mechanism of texture and microstructure evolution during rolling was studied in the present study. Extension twins of coherent nature were observed in the samples rolled up to 50% of reduction. The deformation was relatively inhomogeneous in the samples rolled at 600°C compared to that at 800°C. Visco-plastic self-consistent (VPSC) simulation showed that relative activity of pyramidal <c+a> slip was higher during rolling at 800°C compared to that at 600°C. The average activity of slip systems per grain was less than five for the samples rolled at 600°C and this might be responsible for the strain heterogeneity in the large grains. Further, twinning activity was found to be limited to a true strain of 0.5, as supported by the microstructural observation. VPSC simulation also showed the presence of contraction twins in the samples which was further supported by X-ray texture measurement. Dominant basal texture was observed in the samples irrespective of the temperature of rolling.  相似文献   

6.
Comparative studies of the influence of 0.002–0.12 mass % hydrogenation on the structure and phase composition of the submicrocrystalline and coarse-grained Ti–6Al–4 V alloys are performed. The evolution of the strain processes in the hydrogenated alloy is studied for both alloys upon tension at a temperature of 293 K depending on the hydrogen content and alloy state. It is established that the presence of hydrogen in the nanostructured Ti–6Al–4 V alloy in the solid solution leads to a decrease of its yield stress and an increase of its tensile strength and total strain before failure. The possible reasons for the increased duration of the uniform strain stage and the effect of strain hardening of the alloy in the presence of hydrogen in the solid solution are discussed.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(4):1544-1548
Ultrasonic cavitation erosion experiments were performed on Ti–6Al–4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti–6Al–4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples.  相似文献   

8.
The structures of zigzag-zigzag, armchair-zigzag, zigzag-chiral, armchair-armchair, armchair-chiral, and chiral-chiral pair connections produced by single-walled carbon nanotubes 1.5–5.0 diameter with the use of the combined 5–7 and 4–8 topological defects have been calculated by molecular mechanics methods. It has been established that the use of the combined 5–7 topological defect makes it possible to produce connections between pairs of single-walled carbon nanotubes with any conductivities, chiralities, and diameters, whereas the use of the combined 4–8 topological defect provides a means for forming connections between nanotubes only with the same type of conductivity. The angles between the axes of nanotubes connected by the combined 5–7 and 4–8 topological defects lie in the ranges 145°–180° and 112°–178°, respectively. It has been revealed that there are correlations between structural parameters of the connections and the relative arrangement of the simple topological defects in the combined topological defects.  相似文献   

9.
This paper deals with the formation of Cu2ZnSnSe4 (CZTS) in the process of selenization of metal precursor layers in elemental selenium vapour. Metallic precursors were sequentially evaported from Sn, Zn and Cu sources. Precursor Sn–Zn–Cu films have a “mesa-like” structure and consist mainly of Cu5Zn8 and Cu6Sn5 phases. It was confirmed that the formation of different binary copper selenides is the dominating process of selenization in elemental Se vapour at temperatures up to 300 °C. The formation of kesterite CZTS films begins at 300 °C and dominates at higher temperatures, always resulting in multiphase films that consist of high-quality Cu2ZnSnSe4 crystals and of a separate phase of ZnSe.  相似文献   

10.
11.
The ferrite system Ni x Mg1-x Fe2O4 with 0≤x≤1 was prepared using the usual ceramic technique. The prepared samples were studied by X-ray diffraction and IR spectroscopy. X-ray diffraction analysis proved that all the samples were single-phase with the cubic spinel structure. The lattice constant, radius of the tetrahedral ion, unshared octahedral edge, tetrahedral bond and tetrahedral edge decrease while the bulk and theoretical densities, radius of octahedral ion, octahedral bond and shared octahedral edge increase as nickel ion substitution increases. The positions and intensities of the four bands of IR absorption spectra characterizing ferrites are composition dependent.  相似文献   

12.
The new apatite–silicate phosphor doped with Eu ions in Ba10(PO4)4(SiO4)2 matrix was synthesized through solid-state reaction. It was found that the as-synthesized phosphor displayed apparent mixture of band and line emission peaks giving rise to pseudo white light. The narrow emission bands peaking at 410 nm can be assigned to the 4f65d→4f7(8S7/2) transition of Eu2+ ions, and the other band at 507 nm is ascribed to anomalous fluorescent emission. One group of line emission peaking at 595 nm and 613 m were due to the 5D07F1 and 5D07F2 transition of Eu3+ ions. The occurrence of photostimulated luminescence and discrete emission lines in violet (410 nm), green (507 nm) and red (595 nm and 613 nm) colors indicate that this material has potential application in fields of white-light-emitting.  相似文献   

13.
In this paper, the normally-off N-channel lateral 4H–Si C metal–oxide–semiconductor field-effect transistors(MOSFFETs) have been fabricated and characterized. A sandwich-(nitridation–oxidation–nitridation) type process was used to grow the gate dielectric film to obtain high channel mobility. The interface properties of 4H–Si C/SiO_2 were examined by the measurement of HF I–V, G–V, and C–V over a range of frequencies. The ideal C–V curve with little hysteresis and the frequency dispersion were observed. As a result, the interface state density near the conduction band edge of 4H–Si C was reduced to 2 × 10~(11) e V~(-1)·cm~(-2), the breakdown field of the grown oxides was about 9.8 MV/cm, the median peak fieldeffect mobility is about 32.5 cm~2·V~(-1)·s~(-1), and the maximum peak field-effect mobility of 38 cm~2·V~(-1)·s~(-1) was achieved in fabricated lateral 4H–Si C MOSFFETs.  相似文献   

14.
Physics of the Solid State - The Y0.4Bi0.6VO4 and Y0.6Bi0.4VO4 solid solutions two-phase at xBi = 0.95, 0.90, and 0.80 have been formed by the solid-phase synthesis from the initial Y2O3, Bi2O3,...  相似文献   

15.
F. Naghdi  J.Y. Kang  H.S. Kim 《哲学杂志》2015,95(31):3452-3466
The shear deformation behaviour of an extruded Mg–4Zn–0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.  相似文献   

16.
Using the semiempirical method of partial neglect of differential overlap (PNDO), we have calculated the wave functions, energies, orbital configurations of electronic states, oscillator strengths of transitions, electronic density distributions, and dipole moments for the molecule of biologically active 8–azagona–12,17–dione, containing a conformationally rigid –acyl––aminovinylcarbonyl fragment. It has been established that as to their orbital nature the excited lower and higher singlet electronic states of this molecule are of the n*– and * type respectively. The results of the theoretical analysis are in good qualitative agreement with the spectral data on absorption and luminescence. The calculations of the intermolecular interaction of the compound under consideration with a medium show that the molecular systems under consideration can possess a dynamic multicenter structure.  相似文献   

17.
《Comptes Rendus Physique》2003,4(4-5):541-553
The origin of the correlated Ca–Ti–Cr–Fe–Ni isotopic anomalies in the Ca–Al-rich inclusion of the EK-1-4-1 of the Allende is a longstanding puzzle. The search for a stellar environment which could explain the enrichment of neutron-rich stable Ca–⋯–Ni isotopes in a self-consistent way requires nuclear physics data far from stability. Recent experimental data have been obtained in the region of the shell closures N=28 and N=40, where the possible progenitors of these nuclei are found. Astrophysical network calculations have been updated by including the new β-decay properties and microscopic predictions of neutron-capture cross sections. Interplay between nuclear structure far from stability and the observed isotopic anomalies is especially evident for the high entropy (S≃150) scenario which would characterize the neutrino-driven wind in a type II supernova. To cite this article: O. Sorlin et al., C. R. Physique 4 (2003).  相似文献   

18.
We calculated binding energies and wave functions of the 4He tetramer ground and excited states employing various realistic 4He?4He potentials which includes the currently most accurate one with the adiabatic, relativistic, QED and residual retardation corrections. We used our Gaussian expansion method (GEM) for ab initio variational calculations of few-body systems. We found that precisely the same shape of the short-range correlation (r ij < 4Å) in the dimer appear in the ground and excited states of trimer and tetramer. The four kinds of the binding energies of the trimer and tetramer ground and excited states, ${B_3^{(0)}, B_3^{(1)}, B_4^{(0)}}$ and ${B_4^{(1)}}$ , for the different potentials exhibit perfect linear correlations over the range of binding energies relevant for 4He atoms; namely, six types of the generalized atomic Tjon lines were observed.  相似文献   

19.
The feasibility of enhancing thermal conductivity of Al–4Cu–1Mg alloy by depositing 80Cu–20Mo coating using high-power lasers has been examined. Coatings of 667±2.5 μm thickness were formed with metallurgically sound interface. Results showed an 86% increase in the thermal conductivity of Al–4Cu–1Mg alloy due to laser-deposited 80Cu–20Mo alloy coating. This coating approach can potentially be used on low coefficient of thermal expansion metal matrix composites to enhance their thermal conductivity in electronic devices.  相似文献   

20.
Chemiluminescence of the system containing Tb(III) ions, histidine and bromate ions in acid solution was studied. The kinetic curves and CL emission spectra of the system were discussed. The emission spectrum of the histidine–Tb(III)–KBrO3–H2SO4 system revealed two emission maxima at ∼490 and 550 nm, characteristic of Tb(III) ions. Values of lifetimes of the Eu(III) excited states in Eu(III)–histidine system have shown that the histidine formed ML and ML2 complexes in neutral solution and did not make them in acidic environment. On the basis of the results, a possible mechanism of reaction system: histidine–Tb(III)–KBrO3–H2SO4 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号