首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
We propose a model describing the kinetics of accumulation of defects under cyclic loading in metals. Analysis of experimental data on the initial defect distribution and of the role of the free surface of the sample in straining makes it possible to explain the features of generation of fatigue cracks in the bulk, which is typical of the gigacycle fatigue regime at a low stress level. The duality of the Weller curve in the gigacycle fatigue regime is attributed to the emergence of a fine-grain region in the form of a dissipative peaking structure in the defect ensemble.  相似文献   

2.
A study is made of the laws governing the accumulation of microplastic strain during the static and cyclic loading of polycrystalline and submicrocrystalline titanium. It is shown that a change from the polycrystalline structure to the submicrocrystalline structure does not change the character of development of microplastic strain for either type of loading, but it does increase fatigue strength and fatigue limit. A correlation between the fatigue strength based on 106 cycles and the macroscopic elastic limit was found to exist for both types of loading. Siberian Physico-Technical Institute (at Tomsk University), Institute of the Physics of Strength and Materials Science (in the Siberian Division of the Russian Academy of Sciences), and the Institute of the Physics of Promising Materials (at Ufa State University of Aeronautical Engineering). Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 41, No. 12, pp. 20–25, December, 1998.  相似文献   

3.
Endurance results in cyclic tension of several polymeric fibers are reviewed and analyzed in terms of Prevorsek-Lyons theory. It is shown that the plots of log (cycles to failure) against strain amplitude can be divided into regions of short and long term endurance. An expression is derived correlating the inflection point on the S-N curve with the structural parameters: fracture surface energy p, tensile modulus E, activation energy associated with the process of crack growth F*, and stress concentration factor, q. Manson-Coffin endurance plots expressed in terms of log (strain amplitude), log (stress amplitude), and log (strain energy amplitude) are examined. From the log Nf—log (strain energy amplitude) are derived the relative values of fracture surface energy of these fibers. Experimental data are shown which reflect the structural changes which occur in fibers during endurance experiments and an analysis is carried out leading to an estimate of the corresponding changes in p, E, and q.  相似文献   

4.
In the work, we studied the special features of deformation and fracture of quenched steel 50 (0.51%) under static and cyclic tension after combined strain-heat nanostructuring treatment, which includes fictional treatment with subsequent tempering at 350°C. It is shown that the combined nanostructuring treatment of quenched steel 50 changes the character of plastic flow, making it more uniform, in the loaded material. Under static tension, this shows up as disappearance of the yield plateau early in the process, and under cyclic loading, as suppression of the deformation relief formed by shear and rotational deformation modes. Despite incipient cracks, the hardened surface layer thus escapes complete fracture throughout the fatigue loading and preserves its resistance to mechanical contact action.  相似文献   

5.
郭巧能  曹义刚  孙强  刘忠侠  贾瑜  霍裕平 《物理学报》2013,62(10):107103-107103
用嵌入原子势的分子动力学方法模拟了温度对超薄铜膜疲劳性能的影响. 通过模拟, 首先给出了超薄铜膜的总能及应力随循环周次的变化曲线; 根据叠加经验式得出的叠加量随循环周次变化曲线, 判断出各种恒定温度下超薄铜膜的疲劳寿命. 由 200–400 K温度范围内超薄铜膜的疲劳寿命-温度变化曲线, 可以发现存在两个温度区域: 在约370 K以下, 超薄铜膜的疲劳寿命随温度升高缓慢增加, 而在约370 K以上增加较快. 建立了模型并用位错演化机制解释了超薄铜膜疲劳寿命的温度依赖关系. 关键词: 分子动力学 疲劳 温度效应 位错  相似文献   

6.
Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qualitatively analyzed the feasibility of using the amplitude-frequency characteristics and the stress wave factors(SWFs) of ultrasonic Lamb wave propagation to assess fatigue damage in solid plates.Liquid wedge transducers located on the surface of solid plates tested are used to generate and detect the Lamb wave signals.Based on the Ritec-SNAP ultrasonic measurement system,the experimental setup for assessing the degree of fatigue damage in solid plates using ultrasonic Lamb wave approach has been established.For several rolled aluminum sheets subjected to tension-tension cyclic loading,the experimental examinations have been performed for the relationships between the amplitude-frequency characteristics of ultrasonic Lamb wave propagation and the numbers of loading cycles(denoted by N),as well as the correlations between the Lamb wave SWFs and N.The experimental results show that the Lamb wave SWFs decrease monotonously and sensitively with the increment of cycles of fatigue loading.Based on the correlations between the Lamb wave SWFs and N,it is further verified that ultrasonic Lamb wave propagation combined with the Lamb wave SWFs can be used to effectively assess early fatigue damage in solid plates.  相似文献   

7.
Stress transfer efficiency in model composites under dynamic loading   总被引:1,自引:0,他引:1  
The micromechanics of tension–tension fatigue loading in model single-fibre composite geometries is investigated in this paper. In an attempt to emulate the conditions encountered in full carbon fibre composites, the fibres were prestrained prior to the curing process to ensure that they were free of high residual compressive stresses as a result of resin shrinkage. The resulting specimens were grouped into two categories depending on the level of the initial fibre prestrain (case A low, case B high). The cyclic load is designed to be well below the endurance fatigue limit of the polymer matrix (∼0.6%), and to have a frequency low enough to avoid unwanted thermal post curing. Throughout the preparation procedure, as well as during fatigue loading, the fibre stress (strain) was constantly monitored by means of laser Raman spectroscopy. The fibre axial stress distributions at each fatigue step were converted to interfacial shear stress (ISS) distributions, from which important parameters such as the maximum ISS the system can accommodate, the transfer length for efficient stress built-up and the length required for the attainment of maximum ISS were obtained. The results showed that, up to 2×106 loading cycles, the main parameters which affected the stress transfer efficiency at the interface were the fibre fracture process itself and the viscoelastic behaviour of the matrix material. Received: 7 November 2001 / Accepted: 22 March 2002 / Published online: 5 July 2002  相似文献   

8.
In this paper, the interface debonding and frictional slipping of carbon fiber-reinforced ceramic-matrix composites (CMCs) under two-stage cyclic fatigue loading have been investigated using micromechanics approach. Under cyclic fatigue loading, the fiber/matrix interface shear stress degrades with increasing cycle number due to interface wear. The synergistic effect of interface wear and fatigue loading sequence on interface debonding and frictional slipping has been analyzed. Based on the fatigue damage mechanism of fiber slipping relative to matrix, in the interface debonded region, upon unloading and subsequent reloading, the interface debonded length and interface slip lengths, i.e. interface counter-slip length and interface new-slip length, are determined using the fracture mechanics approach. The relationships between interface debonding, interface slipping, interface wear, cycle number, and different loading sequences are determined. There are two types of fatigue loading sequences considered, i.e. (1) cyclic loading under low peak stress for N1 cycles, and then high peak stress; and (2) cyclic loading under high peak stress for N1 cycles, and then low peak stress. The effects of peak stress level, interface wear, cycle number, and loading sequence on interface debonding and frictional slipping of fiber-reinforced CMCs have been analyzed. The fatigue hysteresis loops of cross-ply carbon fiber-reinforced silicon carbide composite corresponding to different cycle number under two-stage cyclic fatigue loading have been predicted.  相似文献   

9.
The tensile and fatigue behavior of nanoscale copper at various temperatures has been analyzed using molecular dynamics simulation. The stress–strain curve for nanoscale copper was obtained first and then the Young's modulus of the material was determined. The modulus was larger than that obtained by previous studies and decreased with increasing temperature. From the fatigue test, the cyclic stress–number of cycles curve was obtained and the stress increased with increasing temperature. Furthermore, the ductile fracture configuration was observed in the fatigue testing process under the lower applied stress. It was also observed that nanoscale copper appears to have a fatigue limit of 105 cycles.  相似文献   

10.
The multiscale mechanism of fatigue fracture of titanium with the surface layer hydrogenated under alternating bending at room temperature is studied. It is shown that the generation of the fatigue fracture occurs in the surface layer subjected to plastic deformation in conjunction with an elastically loaded substrate. The latter causes the appearance of a strong curvature of the material and the appearance of micropores in these areas along with any fatigue cracks. The emergence of the local curvature of the crystal structure plays a central role in the origin and the development of the fatigue fracture as the structural phase decomposition of the material under cyclic loading.  相似文献   

11.
The paper presents the results of static and cyclic tensile tests and alternate cyclic bending tests of 12Cr1MoV specimens in the initial state and after surface nanostructuring with a Zr+ ion beam. Examination by optical and scanning electron microscopy and interference profilometry revealed differences in the formation of the deformation relief and in the character of cracking of the modified surface layer. The changes occurring in the modified surface layer were estimated by nanoindentation, X-ray analysis, and fractography. The nanostructure formed in the treated surface layer was analyzed by transmission electron microscopy. The difference in deformation is interpreted using the multiple cracking concept. The effect of substantial enhancement of fatigue strength is associated with retarded plastic deformation and fatigue crack propagation in the modified surface layer.  相似文献   

12.
Both fluoroalkylsilane (FAS) and octadecyltrimethoxysilane (ODS) were coated on oxidized silicon wafers using soaking and CVD method. Smooth coatings with Ra values of less than 1 nm were attained. The slope of the sliding acceleration against the inverse of the droplet mass showed an inflection point. That point shifted to the direction of smaller droplets with decreasing FAS ratio to ODS. The water droplets’ length was increased when the sliding velocity was increased. Fluoroalkylsilane addition to ODS increases the interaction between water and the hydrophobic surface. Results showed that the sliding acceleration of a water droplet depends strongly on the surface ratio of these silanes.  相似文献   

13.
Summary The comparison of the change of hardness and plastic deformation amplitude at a constant stress loading or stress amplitude at a constant deformation loading during the fatigue process shows some singularity of the hardening and softening effects. These effects were investigated on mean carbon and low-alloyed steel and on globular cast iron.The fatigue fractures at cycle numbers 104÷106 under stresses below the yield strength predominate in the softening process, which arises after an inconsiderable hardness increase extends in the region to 0·2 from the fracturing cycle number. Under the stresses above the yield strength, which in some cases for annealed and coarse-grained states are below the fatigue limit, the hardening process predominates, followed by a hardness increase in the field up to 0·25 and above the fracturing cycle number.At low cycle fatigue fractures with cycle numbers < 104 depending on the cyclic plastic properties of steels the fatigue process can be followed by a continuous hardening or softening till fracture. This process is characterized by the change of the deformation amplitude and a one-sided accumulation of plastic deformations at a constant amplitude of active stresses. The one-sided accumulation of deformations commonly ends in a quasistatic failure. Under loading with a constant deformation amplitude during softening a fatigue fracture takes place as a result of damage accumulation under the alternating stresses with amplitudes decreasing with cycle number.  相似文献   

14.
As a simple model of reentry, we use a general FitzHugh-Nagumo model on a ring (in the singular limit) to build an understanding of the scope of the restitution hypothesis. It has already been shown that for a traveling pulse solution with a phase wave back, the restitution hypothesis gives the correct stability condition. We generalize this analysis to include the possibility of a pulse with a triggered wave back. Calculating the linear stability condition for such a system, we find that the restitution hypothesis, which depends only on action potential duration restitution, can be extended to a more general condition that includes dependence on conduction velocity restitution as well as two other parameters. This extension amounts to unfolding the original bifurcation described in the phase wave back case which was originally understood to be a degenerate bifurcation. In addition, we demonstrate that dependence of stability on the slope of the restitution curve can be significantly modified by the sensitivity to other parameters (including conduction velocity restitution). We provide an example in which the traveling pulse is stable despite a steep restitution curve. (c) 2002 American Institute of Physics.  相似文献   

15.
The interface shear stress in C/SiC and SiC/SiC ceramic-matrix composites with different fiber preforms, i.e. unidirectional, cross-ply, 2D woven, 2.5D woven, and 3D braided, under cyclic fatigue loading at room and elevated temperatures have been estimated. An effective coefficient of the fiber volume fraction along the loading direction was introduced to describe the fiber preforms. Based on fiber slipping mechanisms, the hysteresis loops models considering different interface slip cases have been developed. Using the experimental fatigue hysteresis dissipated energy, the interface shear stress degradation rates of C/SiC and SiC/SiC composites with different fiber preforms at room and elevated temperatures have been obtained and compared. It was found that the interface shear stress degradation rate is the highest for 3D braided SiC/SiC at 1300 °C in air, and the lowest for 2D woven C/SiC at room temperature under cyclic fatigue loading.  相似文献   

16.
In this paper, the stress?strain hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under in-phase/out-of-phase thermomechanical and isothermal cyclic loading have been investigated. The thermomechanical hysteresis loops models have been developed considering synergistic effects of thermal temperature cycling, stress levels and fiber/matrix interface debonding. The relationships between thermal cyclic temperatures, peak stress, fiber/matrix interface shear stress and stress?strain hysteresis loops under in-phase/out-of-phase thermomechanical and isothermal cyclic loading have been established. The effects of fiber volume fraction, peak stress, matrix crack spacing, interface frictional coefficient, interface debonded energy and temperature range on the stress?strain hysteresis loops under in-phase/out-of-phase thermomechanical and isothermal cyclic loading have been analyzed. The hysteresis loops of cross-ply SiC/magnesium aluminosilicate (MAS) composite under in-phase/out-of-phase thermomechanical and isothermal fatigue loading have been predicted.  相似文献   

17.
徐升美  何怡贞 《物理学报》1959,15(4):178-185
为了说明Si2516线的定标曲线的斜度与物质浓度的定量关系是否有更普遍的意义,我们进一步考察了钴、镍的多重谱线系中13条谱线的定标曲线的斜度与物质浓度的关系。一系列的实验结果指出,对某一谱线来说,定标曲线的斜度决定于物质的浓度;在另一方面,当分析物质的浓度在一定范围时,多重谱线中不同谱线的定标曲线的斜度与相应谱线的固有强度也有线性的定量关系。因此我们可以认为在光谱分析中,定标曲线的斜度b主要决定于谱线的强度。对b的物理意义的进一步了解,指出了在实际分析时提高定标曲线斜度的一些途径。  相似文献   

18.
We investigated a method to detect fatigue damage of steels without contact using laser speckle. In the earlier stage of fatigue in steels, slipbands appear on the surface and microscopic shear strain is stored in the slipbands. The slipbands appear more densely with progress of fatigue damage. When a laser illuminates the surface of the fatigued steel, light intensity distribution of the laser speckle pattern formed by the reflected light changes with the change of surface properties caused by slipbands. It has been clarified that the width of the speckle pattern broadens corresponding to spatial frequency distribution of the surface profile and thus it is presumed that speckle pattern broadens with increase of slipband density. This shows that we can detect fatigue damage by observing the laser speckle pattern on material surface. The method presented in this paper is based on this phenomenon. We observed change of the speckle pattern during fatigue loading under constant stress amplitude using a steel specimen and the relation between speckle pattern, number of loading cycles and also magnitude of loading was considered. We investigated the possibility of detection of fatigue damage using this method and also proposed a method to estimate fatigue life by observing change tendency of the speckle pattern depending on the number of loading cycles in the earlier stage of fatigue before crack initiation.  相似文献   

19.
Closed-form expressions for two-way propagation and reverberation in variable depth ducts are derived for isovelocity water by using ray invariants and acoustic flux. These expressions include the transition to single mode propagation at long range. Three surface scattering laws are considered: Lambert, Lommel-Seeliger, and angle independent, and these are compared with a point target to give explicit signal-to-reverberation ratios. In particular, there is interesting and sometimes surprising behavior when the propagation obeys mode-stripping (the high angles are preferentially attenuated by bottom losses) whilst the scattering obeys Lambert's law (high angles are preferentially back-scattered). There may be conditions where the signal-to-reverberation ratio is independent of range so that there is no reverberation range limit. Bottom slope dependence of both target echo and reverberation is surprisingly weak. The implications of refraction are discussed. The angle dependence for a point or surface scatterer at a given range can be translated into arrival time, so it is possible to calculate the received pulse shape for one-way or two-way paths. Because the tail is exponential with a range-independent half-life that only depends on bottom reflection properties there is scope for extracting geoacoustic information from the pulse shape alone. This environmental time spread is also of use to sonar designers.  相似文献   

20.
A new two-frame interferometric method with a blind phase shift of a reference wave is proposed for the reconstruction of smooth surface relief areas. In this method, a correlation approach based on the determination of correlation coefficient between intensity distributions of two interferograms is applied for the phase shift extraction. An algorithm for this method realization is developed and its performance is verified on test surfaces. An experimental setup containing a Twiman-Green interferometer was used in the reconstruction of smooth surfaces of metal specimens using the developed algorithm. Surface displacement phase fields were generated in case of a CT-notched specimen made of an aluminum alloy by the interactive procedure of element stitching of two surface reliefs and subtracting the surface relief after cyclic loading from the initial one. The received surface displacement fields allow us to determine the studied specimen fatigue process zone (FPZ) and FPZ size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号