首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The problem of steady two-dimensional laminar flow in slip flow regime of a viscous incompressible and electrically conducting fluid through an inclined channel of rectangular cross-section in presence of a transverse magnetic field has been considered. The walls of the channel are assumed to have prescribed temperatures and finite conductivities. The expressions for the velocity component, induced magnetic field and the temperature are obtained and their numerical results are shown graphically.  相似文献   

2.
以熔盐为传热工质,对考虑熔盐自然对流情况下横纹管内的流动传热进行了数值模拟。结果表明:同一Re数,横纹管内下侧Nu数大于上侧Nu数,随着Re数的增加,管内下侧Nu数与上侧Nu数的差值逐渐减小。考虑自然对流影响的横纹管内平均Nu数与不考虑自然对流影响的横纹管内平均Nu数基本相等。强制对流的Re数越低,自然对流对横纹管单侧传热影响越明显。横纹管槽宽越小,槽深越深,自然对流对单侧传热影响相对越小。通过非线性拟合,分别得出横纹管内下侧传热Nudown/Nuave-b、上侧传热Nuup/Nuave-b与浮升力参数Bo的关联式。  相似文献   

3.
4.
The hydromagnetic slip flow of a viscous incompressible and electrically conducting fluid through an inclined channel of rectangular cross section in the presence of a transverse magnetic field has been analysed. The walls of the channel are assumed to have prescribed temperatures and finite conductivities. The boundary conditions for both velocity and temperature are properly rectified. The expressions for the velocity, induced magnetic field and the temperature are obtained both analytically and numerically.  相似文献   

5.
In this paper, free, forced and Marangoni convective flows within an open enclosure partially filled with a porous medium under impacts of an inclined magnetic field are investigated. The forced convection is due to the movement of the side walls, the free convection induces from the heated part in the bottom wall and the Marangoni convection is a responsible on the thermal interaction at the free surface (top wall). The flow domain is partially heated from below and partially filled by a porous medium. The local thermal non-equilibrium model (LTNEM) is used to represent the thermal field in the porous layer (bottom layer) while the two-phase model is used to simulated the micropolar nanofluid behavior. Two cases based on the direction of the movement of the side walls are considered, namely, assisting flow (downward lid motion) and opposing flow (upward lid motion). Numerical analysis based on the finite volume method is conducted and the obtained are presented in terms of the streamlines, isotherms, angular velocity, and the cup-mixing temperature θcup, the bulk-averaged temperature θave and the average Nusselt numbers. The controlling parameters, in this situation, are the Darcy number Da, the Marangoni number Ma, the Nield number H, the vortex viscosity Δ, the Biot number Bi and the Hartmann number Ha. The results revealed that the increase in the Nield number enhances the cup-mixing temperature θcupand bulk-averaged temperature θave regardless the direction of the side walls motion. Also, the average Nusselt number is boosted as the Marangoni number is grown.  相似文献   

6.
7.
This paper deals with the numerical solution for natural convection and volumetric radiation in an isotropic scattering medium within a heated square cavity using a hybrid thermal lattice Boltzmann method (HTLBM). The multiple relaxation time lattice Boltzmann method (MRT-LBM) has been coupled to the finite difference method (FDM) to solve momentum and energy equations, while the discrete ordinates method (DOM) has been adopted to solve the radiative transfer equation (RTE) using the S8 quadrature. Based on these approaches, the effects of various influencing parameters such as the Rayleigh number (Ra), the wall emissivity (ει), the Planck number (Pl), and the scattering albedo (ω), have been considered. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in absence of radiation, the temperature and the flow fields are centro-symmetrics and the cavity core is thermally stratified. However, radiation causes an overall increase in the temperature and velocity gradients along both thermally active walls. The maximum heat transfer rate is obtained when the surfaces of the enclosure walls are regarded as blackbodies. It is also seen that the scattering medium can generate a multicellular flow.  相似文献   

8.
9.
This paper presents a numerical analysis of turbulent periodic flow and heat transfer in a rectangular channel with detached V-baffles. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling and using the QUICK scheme for the convection terms. Air is used as the test fluid with the air flow rate in terms of Reynolds numbers ranging from 3000 to 20,000. The effects of different detached-clearance ratios (c/H, CR) of 0.0, 0.05, 0.1, 0.15, and 0.2, baffles-pitch to square channel-diameter ratio (pitch ratio (p/H), PR) is 1.0, baffles-height to square channel-diameter ratio (blockage ratio (b/H), BR) is 0.10, and attack angle (α) is 45? on heat transfer, friction factor and thermal enhancement factor are investigated numerically. It is found that a pair of counter-rotating vortices (P-vortex) caused by the baffles can induce impingement/attachment flows repeatedly on the rectangular channel walls leading to a greater increase in the heat transfer over the test channel. The maximum thermal performance and heat transfer are found to be about 1.5 and 3.3, respectively for CR = 0.05 and Re = 3000, while the highest pressure loss is about 21.5 in the case of CR = 0.2 and Re = 20,000.  相似文献   

10.
It is important for laser designers to study the characteristics of heat transfer from the laser crystal slab to the coolant in high-power DPSS laser operations. We have simulated and obtained the optimum heat transfer coefficient and coolant flow rate for our cavity design, in which the circulating coolant is maintained at a constant temperature. It has been determined that the coolant temperature and the convective heat transfer coefficient (h) are important parameters in the thermal analysis. The coefficient h is affected by the coolant flow rate, the physical properties of the laser slab and the coolant and the pumping cavity geometry. Using analytical heat transfer equation, for cooling water temperature of 300 K, the optimum flow rate for our cavity geometry is found to be 390 cm3/s, corresponding to h=5 W/cm2 K.  相似文献   

11.
纳米流体对流换热系数增大机理   总被引:4,自引:0,他引:4       下载免费PDF全文
谢华清  陈立飞 《物理学报》2009,58(4):2513-2517
纳米流体流动换热能力优于传统流体介质.研究了纳米流体热物性的提升和热散射对其对流换热系数的影响.结果表明,纳米颗粒的加入,优化了介质的热物性,增大了导热系数,强化了纳米流体内颗粒、流体以及流道管壁碰撞和相互作用,同时加强了流体的混合脉动和湍流,从而增大了对流换热系数. 关键词: 纳米流体 换热系数 热散射  相似文献   

12.
This paper presents an experimental study of free and forced convective heat transfer along vertical slender cylinders. The local heat transfer coefficient is determined from the measurement of the surface temperature distribution performed by quantitative infrared thermography. It is found that the convective heat transfer is strongly dependent on the cylinder curvature and misalignment with the flow. The effect of proximity of two cylinders is emphasized in the case of forced convection. Correlations are proposed for the two types of convection. It is worth noting that circumstances exist where the turbulent heat transfer in free convection can be of the same order of magnitude as for laminar forced convection. The outcome of the study demonstrates the suitability of quantitative infrared thermography to solve complex problems and to provide a deeper understanding of the heat transfer on slender cylinders.  相似文献   

13.
对均匀和非均匀热流边界条件下螺旋管内湍流换热进行了数值模拟,结果表明:当螺旋管表面加热功率一定时,相同Re数下均匀热流边界条件时螺旋管截面周向局部Nu数高于非均匀热流边界条件;非均匀热流边界下充分发展段的平均Nu数小于均匀热流边界;相同的De数下,曲率较小的螺旋管换热系数大。  相似文献   

14.
 为分析冷冻靶丸外部温度场,应用ANSYS软件对ICF空心微球靶的热传递进行了有限元分析。建立了单元传热的几何物理模型,靶丸微球呈空间均匀分布,计算区域由三个同心球壳组成,分别为液体层、靶丸壳层以及氦气层,氦气层厚度为球壳层厚度的7倍。模型左右两边界设为绝热边界条件,采用智能自动划分网格,设定参数为3,单元类型为三角形。模拟表明,在靶丸工作温度为24 K的情况下,为保持靶丸气泡受力平衡,自洽得到靶丸内部温度梯度为14.02 K/cm,以此求解出所施加的外部温度场为7.758 K/cm。将计算值与现有的实验结果进行了比较,模拟结果与国外实验值(8.2 K/cm)吻合得较好。  相似文献   

15.
运用傅里叶光学分析法推导出系统抖动造成单个光源的相位和振幅发生波动时的远场光强表达式,以1维阵列为例分析了系统抖动对远场的影响。研究表明:随着参与合束的发光单元数目的增加,尖峰变锐,能量更集中;系统抖动引起了远场峰值光强的减少,出现了本底现象,破坏了远场的对称性和光束质量;激光阵列单个光源的相位随机抖动应该控制在3/8范围内;相干合束发光单元数目越多,系统抖动对远场的影响越小。  相似文献   

16.
You-Wei Gu  Song Ge 《Molecular physics》2013,111(12):1922-1930
Effective heat dissipation from nano-fluidic devices is sometimes necessary to ensure their performance and lifespan. In the molecular dynamics simulation of nanoscale convective heat transfer, thermostats cannot be directly applied to the fluid because of the non-uniform temperature distribution. Periodic boundary is typically utilised, but unrealistic axial heat conduction exists when there is a temperature difference between the outlet and images of inlet atoms. In this paper, the effect of axial conduction caused by periodic boundary is investigated through the Péclet number (Pe). Taking viscous dissipation into consideration, the magnitude of outlet thermal diffusion is observed to decrease with increasing Pe. The local average temperature of fluid changes in an exponential form except in the region close to the outlet. Results show that the contribution of outlet axial conduction to the local average temperature is less than 2.0% when Pe > 10. The main reason is that the magnitude of fluid velocity and viscous heat dissipation in nanochannels is much larger than that in macro-channels at the same Péclet number.  相似文献   

17.
Moiré deflectometry is a robust and simple optical method that allows obtaining the temperature field in flows with uniform pressure and two-dimensional and axisymmetric flows. Since in real configurations it is not possible to keep exactly the hypothesis of two-dimensional flow, it is necessary to asses this influence. Therefore this work studies a procedure to estimate the errors due to the end-wall and 3-D effects when Moiré deflectometry is used for measuring the temperature field of an external convective heat transfer flow with free edges.According to the value of the parameter Gr/Re2, results show two tendencies. The error in temperature measurement is smaller than 1% for ratios of thermal boundary layer thickness to the test field width lower than 0.4, in turbulent forced convection flows for temperature differences of 40 K. Temperature effects are significative, multiplying the error by two for a temperature difference 50% greater. These results enable researchers to evaluate the errors of this measurement technique associated with the end-wall effect.  相似文献   

18.
The influence of Soret effect on thermogravitational convection in an enclosure with heat-conducting walls of finite thickness in the presence of local heat and mass sources is numerically analyzed. The mathematical model is formulated in dimensionless variables of streamfunction-vorticity vector. Streamlines and temperature fields representing the influence of the Rayleigh number Ra = 105, 106 and the nonstationarity factor 0 < τ < 3000 are obtained.  相似文献   

19.
Mathematical modeling of the processes of heat transfer and hydrodynamics in a closed two-phase thermosyphon is carried out in a wide range of key parameters. The mathematical model is based on the laws of conservation of mass, momentum, and energy in dimensionless variables of stream function-vorticity vector-temperature. The influence of the Rayleigh number and the dimensionless time on the local and integral thermal hydrodynamic characteristics is estimated.  相似文献   

20.
介绍了射流水冷技术并将其应用到高能激光器反射镜的冷却中,设计了射流式水冷镜。采用计算流体力学的方法,利用通用有限元软件ANSYS的流体分析模块FLOTRAN对单孔内射流进行了数值模拟,详细讨论了各孔参数对换热性能的影响,实现了孔参数的优化。结果表明:在水冷镜中采用射流技术可以获得很好的对流换热效果,换热系数可达100 kW/(m2·K)以上,且具有结构简单、可控性强等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号