首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of 232Th instead of 238U as a fertile isotope, 233U instead of 239Pu as the main fissile isotope, heavy water instead of light water as a coolant, and its dilution with light water in the VVER reactor campaign make possible self-enrichment of fuel with fissile isotopes, including the time upon achieving the balanced isotopic abundance ratio of actinides, and also provide conditions for closing the Th-U-Pu fuel cycle. This allows increasing the fuel lifetime by around two orders of magnitude, making it much easier to handle radioactive waste, reducing the nuclear hazard of PWE reactors, and providing a technological barrier to prevent the distribution of fissile materials and nuclear technologies.  相似文献   

2.
The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.  相似文献   

3.
At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.  相似文献   

4.
An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.  相似文献   

5.
In a thermal neutron reactor, multiple recycle of U-Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.   相似文献   

6.
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa–232U–233U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.  相似文献   

7.
The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta-decay reaction positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.  相似文献   

8.
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.  相似文献   

9.
Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.  相似文献   

10.
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.  相似文献   

11.
P K Iyengar  K Subba Rao 《Pramana》1985,24(1-2):259-278
Discovery of the neutron in 1932 by Chadwick ushered in a new era of scientific research and technology. The neutron is endowed with unique properties in its mass, life time, spin and magnetic moment etc and every important property has been used in the study of condensed matter, biological molecules, nuclear forces, stellar objects and other fields. Neutron has a wide range of applications in power production, breeding of fissile fuel, radiography, medicine and others.  相似文献   

12.
It is shown for a closed thorium–uranium–plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain ~54 kg of fission products, ~0.8 kg of thorium, ~0.10 kg of uranium isotopes, ~0.005 kg of plutonium isotopes, ~0.002 kg of neptunium, and “trace” amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.  相似文献   

13.
Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.  相似文献   

14.
The small reactor design for the remote and less developed areas of the user countries should have simple features in view of the lack of infra-structure and resources. Many researchers consider long core life with no on-site refuelling activity as a primary feature for the small reactor design. Long core life can be achieved by enhancing internal conversion rate of fertile to fissile materials. For that purpose, thorium cycle can be adopted because a high fissile production rate of 233U converted from 232Th can be expected in the thermal energy region. A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum neutron leakage and void reactivity. The result was a more compact core, where assemblies were designed having 19-fuel pins in 1.25 pitch-to-diameter ratio. Optimum reflector thickness of 15 cm resulted in minimal neutron leakage in view of economic limitations. A 0.5 cm gap between assembles achieved more safety and 2.2% enrichment requirements. The present feasibility study suggests a thermal core of acceptable neutronic parameters to achieve a simple and safe core.  相似文献   

15.
随着核电事业的快速发展,核电厂卸载的乏燃料越来越多。如何处置核电站乏燃料中的次锕系核素(MA)既是核燃料再利用的重要过程,又是闭式循环中的关键步骤。如果处置得当,不仅可以提高燃料的利用率,而且可以将MA变成同位素燃料电池、中子源等有用的核素。国际上认可的处置方法是分离-嬗变,但是嬗变MA的难点是嬗变堆型的选取和如何提高嬗变率。压水堆(PWR)是国内外最成熟的堆型和商业运行的主要堆型,也是现阶段最具有可能进行MA嬗变的堆型。于是,本文利用MCNP程序研究了压水堆嬗变MA的特性,通过研究MA嬗变棒的设计、添加位置和添加量等对压水堆堆芯有效增殖因子的影响,初步探索出最佳的压水堆嬗变MA的设计方案,为我国现阶段进行压水堆嬗变MA奠定了理论基础。  相似文献   

16.
The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number N = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with N = 154–172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of N = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving r-process nucleosynthesis.   相似文献   

17.
This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the same as for standard operation in uranium cycle. Two modes of operations are discussed in the paper: mode of preliminary accumulation of 233U and mode of operation in self-sufficient cycle. For the mode of accumulation of 233U it was assumed for calculations that plutonium can be used as additional fissile material to provide neutrons for 233U production. Plutonium was placed in fuel channels, while 232Th was located in target channels. Maximum content of 233U in target channels was estimated to be ∼13 kg/t of ThO2. This was achieved by irradiation for six years. The start of the reactor operation in the self-sufficient mode requires 233U content to be not less than 12 kg/t. For the mode of operation in self-sufficient cycle, it was assumed that all channels were loaded with identical fuel assemblies containing ThO2 and certain amount of 233U. It is shown that nonuniform distribution of 233U in fuel assembly is preferable.   相似文献   

18.
R Ramanna  S M Lee 《Pramana》1986,27(1-2):129-137
The role that could be played by liquid metal-cooled fast breeder reactors (LMFBRs) in the utilization of India’s considerable thorium resources is reviewed in this article. Distinct advantages of thorium-based fuels over plutonium-uranium fuels in LMFBRs pertain to a more favourable coolant voiding reactivity coefficient and better fuel element irradiation stability. The poorer breeding capability of thorium-fuelled fast reactors can in principle be overcome by improved core design and development of advanced fuel concepts. The technical feasibility of such advanced thorium fuels and core designs must be established by sustained research and development. It is also necessary to efficiently close the thorium fuel cycle of fast breeder reactors by appropriate development of the fuel reprocessing and refabrication stages. The Fast Breeder Test Reactor (FBTR) at Kalpakkam is expected to be an important tool for development of thorium fuel and fuel cycle technology. A quick look at the economics of the thorium cycle for fast reactors, vis-a-vis the more conventional uranium cycle indicates only a small and acceptable cost disadvantage on account of the need for remote fabrication of recycled thorium fuel. The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this occasion.  相似文献   

19.
In fusion reactions of40Ar with isotopes of Ho, Tm, Yb, Lu, Hf and Ta, cross sections for the production of proton-rich evaporation-residues near the 126 neutron shell were measured. This first comprehensive study of very fissile spherical residues reveals a surprisingly low stabilizing influence of the sphericalN=126 shell on the survival probability. The experimental results are compared with evaporation calculations. Conclusions for the production of superheavy nuclei are drawn.  相似文献   

20.
A prototype 3He-based Passive Neutron Albedo Reactivity (PNAR) counter was developed and tested at Los Alamos National Laboratory (LANL) in collaboration with the Korea Atomic Energy Research Institute (KAERI) to measure the fissile content in electrochemical recycling (ER) product materials. The counter consists of 16 3He cylindrical gas-filled proportional counters at 4 atm of pressure embedded in high-density polyethylene. In this work, experimental measurements were performed at LANL to characterize the performance of the PNAR counter using surrogate materials for the uranium metal ingot. The purpose of these experiments was to: 1) measure the operating and calibration parameters of the PNAR counter (e.g. efficiency profiles, coincidence gate fractions, die-away time) and 2) evaluate the accuracy and sensitivity of the PNAR method and the time correlated induced fission (TCIF) method for quantifying the 235U mass in PWR fresh LEU fuel rods and Materials Testing Reactor (MTR) HEU fuel plates. A small 244Cm reference source (13,373 n/s) was placed in the center of the fuel rods and fuel plates to simulate spontaneous fission from sub-ppm (parts per million) levels of Cm contamination in the U ingot. In order to compare the relative accuracy of the PNAR and TCIF methods for quantifying 235U mass, calibration curves were generated for the net doubles rate and the doubles Cd ratio using the Deming software. The results from this experiment will be used to obtain a better understanding of the sensitivity of the PNAR and TCIF methods for samples with low neutron multiplication. Furthermore, this experimental measurement data will also help inform safeguards research and development (R&D) efforts on the viability of nondestructive assay (NDA) techniques and detector designs for quantifying fissile content in ER product materials. Future work will include performing measurements with the PNAR counter on small samples of U/TRU materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号