首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular orbital and density functional theory calculations are performed on some di- and tetrasubstituted derivatives of anthraquinone, dihydrophenazine, and acridone to investigate cooperativity in a pair of bifurcated hydrogen bonds occurring in the same molecule. The various structures were selected as convenient model systems for three-center hydrogen bonding of both H...A...H and A...H...A types. In the former type, the C=O moieties in anthraquinone and acridone act as bifurcated hydrogen bond acceptors, and substituted OH groups act as hydrogen bond donors. In the latter type, the N-H moieties in dihydrophenazine, acridones act as bifurcated hydrogen bond donors, and the carbonyl oxygens of substituted CHO groups act as hydrogen bond acceptors. Different indicators of cooperativity reveal that two intramolecular bifurcated hydrogen bonds simultaneously present in the same molecule significantly reinforce each other.  相似文献   

2.
The RAHB systems in malonaldehyde and its derivatives at MP2/ 6‐311++G(d,p) level of theory were studied and their intramolecular hydrogen bond energies by using the related rotamers method was obtained. The topological properties of electron density distribution in O? H···O intramolecular hydrogen bond have been analyzed in term of quantum theory of atoms in molecules (QTAIM). Correlations between the H‐bond strength and topological parameters are probed. The results of QTAIM clearly showed that the linear correlation between the electron density distribution at HB critical point and RAHB ring critical point with the corresponding hydrogen bond energies was obtained. Moreover, it was found a linear correlation between the electronic potential energy density, V(rcp), and hydrogen bond energy which can be used as a simple equation for evaluation of HB energy in complex RAHB systems. Finally, the similar linear treatment between the geometrical parameters, such as O···O or O? H distance, and Lp(O)→σ*OH charge transfer energy with the intramolecular hydrogen bond energy is observed. © 2010 Wiley Periodicals, Inc., Int J Quantum Chem, 2011  相似文献   

3.
Four hydrogen-bonded formamide-water complexes have been studied by ab initio calculations, two where the amino group acts as a donor and two where the carbonyl oxygen is an acceptor. The results indicate that the effect on the conjugated NCO fragment depends on both the type and the energy of the hydrogen bond formed. Although, in all cases the formation of a hydrogen bond leads to increased conjugation, expressed as a shortening of the CN bond and a corresponding lengthening of the CO bond, there is a significant difference in the effect of the two types of hydrogen bonds. This difference may be explained by changes in the electron populations. In two of the complexes the effect of varying the hydrogen bond length has been studied in some detail. It is found that the effect on the conjugated system depends on the length of the hydrogen bond, and analytical expressions have been found for the variations of the CO and CN bond lengths with changes in the hydrogen bond length. Potential functions for the N-H β O and O-H β O hydrogen bonds have also been derived.  相似文献   

4.
The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance d(H···H) between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance r(O···H) between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When d(H···H) and r(O···H) are small (e.g., d(H···H) < 2.0 ? and r(O···H) < 1.62 ?), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They show that the majority of the H-bonds counted by using the conventional criteria combined with the d(H···H) criterion and the restriction of r(O···H) match what is identified by the binding energy criteria (e.g., E ≤ -10 kJ/mol), while some of them still have a binding energy that exceeds the energy criterion, indicating that the complicated quantum effects in H bonding can only be described by the three geometric parameters to a certain extent.  相似文献   

5.
The energy of stereoelectronic interactions in N-C-S and N-N-C systems in tetrahydro[1,3,4]thiadiazolo[3,4- c][1,3,4]thiadiazole was estimated by means of R. W. Bader's quantum theory of "atoms in molecules" (AIM) and natural bond orbital analysis (NBO). The results were compared with those obtained by analysis of rho( r) derived from high-resolution X-ray diffraction data. The analysis of the data obtained allowed one to find a correlation between geometric characteristics of the stereoelectronic interactions, NBO mixing energies and the AIM properties of atoms. Significant variations of nitrogen atom atomic basin populations in different conformers were explained by sterical interactions between their electron lone pairs.  相似文献   

6.
The N-H...O hydrogen bonds are analyzed for formamide dimer and its simple fluorine derivatives representing a wide spectrum of more or less covalent interactions. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. To explain the nature of such interactions, the Bader theory was also applied, and the characteristics of the bond critical points (BCPs) were analyzed: the electron density at BCP and its Laplacian, the electron energy density at BCP and its components, the potential electron energy density, and the kinetic electron energy density. These parameters are used to justify the statement that some of the interactions analyzed are partly covalent in nature. An analysis of the interaction energy components for the systems considered indicates that the covalent character of the hydrogen bond is manifested by a markedly increased contribution of the delocalization term relative to the electrostatic interaction energy. Moreover, the ratio of stabilizing the delocalization/electrostatic contributions grows linearly with the decreasing lengths of the hydrogen bond.  相似文献   

7.
Structural properties of the B(+)-H2 electrostatic complex are investigated through its rotationally resolved infrared spectrum in the H-H stretch region (3905-3975 cm(-1)). The spectrum, which was obtained by monitoring B(+) photofragments while the IR wavelength was scanned, is consistent with the complex having a T-shaped structure and a vibrationally averaged intermolecular separation of 2.26 A, which decreases by 0.04 A when the H2 subunit is vibrationally excited. The H-H stretch transition of B(+)-H2 is red-shifted by 220.6 +/- 1.5 cm(-1) from that of the free H2 molecule, much more than for other dihydrogen complexes with comparable binding energies. Properties of B(+)-H2 and the related Li(+)-H2, Na(+)-H2, and Al(+)-H2 complexes are explored through ab initio calculations at the MP2/aug-cc-pVTZ level. The unusually large red-shift for B(+)-H2 is explained as due to electron donation from the H2 sigma(g) bonding orbital to the unoccupied 2p(z) orbital on the B(+) ion.  相似文献   

8.
《中国化学快报》2023,34(7):107857
The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds (H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles with perturbative triple excitations (CCSD(T)) method of high-precision ab initio calculations, we show that the intermolecular H-bonded systems with different D and A atoms reproduce the structural changes predicted by the well-known cooperative effect upon intermolecular compression. That is, with decreasing intermolecular distance, the D-H bond length first increases and then decreases, while the H···A distance decreases. On the contrary, when D and A are the same, as the intermolecular distance decreases, the D-H bond length decreases without increasing. This obvious difference means that the cooperative effect may not be generally characterized by intermolecular compression. Interestingly, further analyses of many intermolecular systems confirm that this failure has boundaries, i.e., cooperative systems at their respective equilibrium positions have a smaller core-valence bifurcation (CVB) index (<0.022) and stronger binding energies (>0.25 eV), showing a clear linear inverse relationship related to H-bond strength. These findings provide an important reference for the comprehensive understanding of H-bonds and its calculation methods.  相似文献   

9.
烷基锂分子中化学键的 ab initio 研究   总被引:1,自引:0,他引:1  
本文用6-13G基函对3-12G基优化构型进行单点ab initio (从头计算法) 计算, 并根据轨道的组合系数、电荷密度图和键强参数等详尽地分析了烷基锂分子的成键情况。烷基锂的易挥发、易聚合、聚合物易溶于烃类溶剂中等物理、化学性质主要是其C-Li键具有显著的共价性缘故。由于烷基锂的C-Li键比C-H和C-C键的强度要小,故C-Li键易于断裂,使烷基锂表现有高的化学反应活性。  相似文献   

10.
Ab initio calculations have been performed to obtain structures and coupling constants (1)J(N-H), (1h)J(H-N), and (2h)J(N-N) for models of proton sponges with symmetric and asymmetric N-H(+)-N intramolecular hydrogen bonds (IMHBs). For a given model, the asymmetric structure has a lower energy, a longer N-N distance, and a hydrogen bond which has a greater deviation from linearity. The computed values of (2h)J(N-N) for the models are significantly less than predicted values based on the distance dependence of (2h)J(N-N) for complexes with intermolecular N-H(+)-N hydrogen bonds. However, the reduced values of (2h)J(N-N) cannot be attributed solely to the distortion of the hydrogen bond in the models, but also reflect differences in s electron populations at the nitrogens in both the ground state and the excited states which couple to it through the Fermi-contact (FC) operator. Values of (2h)J(N-N) for IMHBs can be related quadratically to the N-N distances in the models, and demonstrate that there is no discrepancy between computed values of (2h)J(N-N) at the short N-N distances found in these systems and experimental data for proton sponges.  相似文献   

11.
xDNA and yDNA are new classes of synthetic nucleic acids characterized by having base-pairs with one of the bases larger than the natural congeners. Here these larger bases are called x- and y-bases. We recently investigated and reported the structural and electronic properties of the x-bases (Fuentes-Cabrera et al. J. Phys. Chem. B 2005, 109, 21135-21139). Here we extend this study by investigating the structure and electronic properties of the y-bases. These studies are framed within our interest that xDNA and yDNA could function as nanowires, for they could have smaller HOMO-LUMO gaps than natural DNA. The limited amount of experimental structural data in these synthetic duplexes makes it necessary to first understand smaller models and, subsequently, to use that information to build larger models. In this paper, we report the results on the chemical and electronic structure of the y-bases. In particular, we predict that the y-bases have smaller HOMO-LUMO gaps than their natural congeners, which is an encouraging result for it indicates that yDNA could have a smaller HOMO-LUMO gap than natural DNA. Also, we predict that the y-bases are less planar than the natural ones. Particularly interesting are our results corresponding to yG. Our studies show that yG is unstable because it is less aromatic and has a Coulombic repulsion that involves the amino group, as compared with a more stable tautomer. However, yG has a very small HOMO-LUMO gap, the smallest of all the size-expanded bases we have considered. The results of this study provide useful information that may allow the synthesis of an yG-mimic that is stable and has a small HOMO-LUMO gap.  相似文献   

12.
The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.  相似文献   

13.
Density functional theory calculations (B3LYP and BH&HLYP functionals) of the potential energy surface have been performed to investigate the mechanisms of decalin breakdown, and the Rice-Ramsperger-Kassel-Marcus and transition state theory methods have been used to compute the high-pressure limit thermal rate constants for the new reaction pathways. The new pathways connect decalin to five primary monoaromatic species: benzene, toluene, styrene, ethylbenzene, and xylene. The reactions used for the new routes are carbon-carbon bond cleavage reaction, dissociation reaction, and hydrogen abstraction and addition reactions. A kinetic analysis was performed for pyrolytic conditions, and benzene, toluene, and xylene were identified as major products.  相似文献   

14.
H-bonding interactions calculated using the AM1, PM3 and SAM1 semiempirical molecular orbital methods are compared with the best available ab initio calculations for several intermolecular interactions of interest: acetic acid dimers, water/ acetylene, water/HCN, formaldehyde/acetylene, formaldehyde/HCN, ozone/acetylene, ozone/HCN, acetylacetone, melamine/ cyanuric acid, and nitromethane/ammonia. Experimental values are also presented where available. The energetic comparisons are based upon enthalpies of interaction from the ab initio calculations after counterpoise and vibrational corrections have been applied. Overall, AM1 seems to do best, except for O---H…O interactions, where none of the three methods excel.  相似文献   

15.
The standard molar enthalpies of formation in the gaseous state of a series of nitrophenols, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, and 3-methyl-4-nitrophenol, have been obtained from combustion calorimetry and results from the temperature dependence of the vapor pressure measured by the transpiration method. To verify the experimental data, ab initio calculations of all compounds have been performed using MP, DFT, and G3 methods. Enthalpies of formation derived from the G3 methods are in a good agreement with the experimental results. The quantitative analysis of ortho, meta, and para pairwise-substituent effects in nitrophenols has been performed, and the strength of intramolecular hydrogen bonding in o-nitrophenol has been derived from thermochemical results and compared with those obtained from spectroscopic experiments and ab initio calculations. The new results help to resolve uncertainties in the available thermochemical data on extended series of nitrophenols.  相似文献   

16.
Experimental work has shown that small amounts of HCl strongly enhance electron capture in ice films. The purpose of the present study was to investigate the effect of adsorbed HCl on the interaction of electrons with small clusters of water. Studies were made with clusters of 6 and 12 water molecules with various geometries both with and without one HCl attached. A number of distinct HCl coordination motifs were examined. All of the neutral structures with HCl exhibited zero thresholds for electron attachment and formed dipole bound anionic states (DBS). The relaxation processes for these "initial DBS" depended on the number of H(2)O (n) and on the number and type of H-bonds to the HCl (x). The initial DBS of systems with only O-H...Cl H-binding underwent dissociative electron attachment (DEA), forming H atoms. Relaxation for systems with ClH...OH(2) bonds was more complex. For the two layer n = 12 systems with x = 2 or 3 the HCl proton moved to the nearest oxygen to form H(3)O(+). Then rearrangement of the proton network occurred, and the Cl(-) became solvated by three HO-H...Cl(-) bonds. The presence of Cl(-) and H(3)O(+) increases the dipole moment and the electron binding energy (EBE) of the network. Further stabilization is achieved by decay into deeper DBS electron traps and/or by reaction of the excess electron with H(3)O(+) to form H(*) atoms. The HCl(H(2)O)(6) clusters with a single Cl-H...OH(2) bond behaved differently. They increased their stability by becoming more linear. This raised the dipole moment and the EBE therefore increased, reducing the total energy. None of these species showed any signs of increasing the number of H-bonds to Cl. The implication of these observations for the interpretation of the results of the experiments with 0.2 monolayer of HCl on 5 monolayer of H(2)O at 20 K, and on the possible role of cosmic ray-induced ionization in polar stratospheric clouds in ozone depletion is discussed.  相似文献   

17.
The traditional resonance model for electrophilic attacks on substituted aromatic rings is revisited using high level valence bond (VB) calculations. A large π-donation is found in the X = NH(2) case and a weaker one for the X = Cl case, not only for ortho and para isomers but also for the meta case, which can be explained by considering five (not three) fundamental VB structures. No substantial π-effect is found in the X = NO(2) case, generally viewed as π-attractive.  相似文献   

18.
The five singly and doubly hydrogen bonded dimers of formamide are calculated at the correlated level by using resolution of identity M?ller-Plesset second-order perturbation theory (RIMP2) and the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method. All structures are optimized with the Dunning aug-cc-pVTZ and aug-cc-pVQZ basis sets. The binding energies are extrapolated to the complete basis set (CBS) limit by using the aug-cc-pVXZ (X = D, T, Q) basis set series. The effect of extending the basis set to aug-cc-pV5Z on the geometries and binding energies is studied for the centrosymmetric doubly N-H...O bonded dimer FA1 and the doubly C-H...O bonded dimer FA5. The MP2 CBS limits range from -5.19 kcal/mol for FA5 to -14.80 kcal/mol for the FA1 dimer. The DeltaCCSD(T) corrections to the MP2 CBS limit binding energies calculated with the 6-31+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are mutually consistent to within < or =0.03 kcal/mol. The DeltaCCSD(T) correction increases the binding energy of the C-H...O bonded FA5 dimer by 0.4 kcal/mol or approximately 9% over the distance range +/-0.5 Angstrom relative to the potential minimum. This implies that the ubiquitous long-range C-H...O interactions in proteins are stronger than hitherto calculated.  相似文献   

19.
We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular-dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for biocompatible devices.  相似文献   

20.
The molecular structure and the intramolecular hydrogen bonding of β‐aminoacrolein and its simple derivatives were investigated at the MP2 and B3LYP levels of theory using the standard 6‐311++G(d, p) basis set. The “atoms in molecules” or AIM theory of Bader which is based on topological properties of the electron density (ρ), was used. Additionally, an analysis of the critical points was performed to study the nature hydrogen bonding in these systems. Natural bond orbital (NBO) analysis was also carried out for to better comprehend the nature of the intramolecular interactions in β‐aminoacrolein and its derivatives. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号