首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red-shift of furocoumarin action spectra, compared with their absorption spectra, has been investigated. An action spectrum for 8-methoxypsoralen (8-MOP) monoadduct formation in the yeast Candida albicans has been determined. The yeast cells were initially exposed to sublethal doses of monochromatic UVA at different wavelengths. Monoadduct formation was monitored by growth inhibition induced, after washing out any unbound 8-MOP, by re-irradiation with a constant second (non-lethal) dose of 330 nm radiation. A comparison between this action spectrum and the absorption spectrum of the dark complex of 8-MOP and DNA was made. In addition, the action spectra of monoadduct formation of five monofunctional compounds including a coumarin derivative have been determined. These action spectra were compared with their respective DNA dark complex absorption spectra. In general, the peaks of the furocoumarin DNA dark complexes show a red-shift when compared with the free furocoumarin molecule and the action spectra show peaks which correspond with the peaks of the dark complexes. Such data indicate that the DNA dark complex is the chromophore for growth inhibition in yeast rather than the free furocoumarin. The similarity of the 8-MOP monoadduct formation action spectrum and 8-MOP action spectra suggests that spectral dependence for the photobiological effects (including the red-shift) is dependent on monoadduct formation rather than, as previously suggested by several authors, crosslink formation. The action spectrum for the coumarin derivative 4-methyl N-ethylpyrrolo (3,2-g) coumarin (PCNEt) correlated well with the free molecule absorption spectrum rather than DNA dark complex indicating that the free molecule is the chromophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The action spectrum (240-300 nm) for photoinactivation of unsensitized phage T7 and the action spectra (310-380 nm) for photoinactivation of phage T7 sensitized with 8-methoxypsoralen (8-MOP) and angelicin were measured by an automated method. For unsensitized phage T7 the action spectrum is in good agreement with the absorption spectrum. For sensitization with angelicin the action spectrum is similar to the absorption spectrum, but for sensitization with 8-MOP the spectra are different. The agreement between the T7 absorption and action spectra in the far-UV region is due to photodamage of DNA, leading to phage inactivation. The similarity in the action and absorption spectra in the near-UV region for sensitization with angelicin seems to be in accordance with the monofunctional photobinding of angelicin to DNA. The action spectrum for sensitization with 8-MOP has a maximum at about 320 nm and this suggests that, in addition to the monoadducts, the biadducts play a role in the inactivation of phage T7. Taking the number of bound furocoumarin molecules into consideration, the quantum efficiencies were estimated. Furocoumarin increases the quantum efficiency in the near-UV region and the values are similar to those obtained in far-UV light without psoralens.  相似文献   

3.
We present evidence for the presence and nature of a UVB-specific photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. The photoreceptor mediates at least the photosensory induction of mycosporine-like amino acid (MAA) synthesis. Because MAA synthesis in this organism can also be induced under salt stress, we could distinguish between the photosensory and the purely biochemical requirements of MAA synthesis. Neither visible light nor UV radiation was necessary for the biosynthetic process, thus indicating that the UVB (280-320 nm) dependence of biosynthesis is based on a UV photosensory capacity of the organism. An action spectrum of the MAA synthesis showed a distinct peak at 310 nm tailing down into the UVA (320-400 nm) region with no detected activity above 340 nm. We found that radiation below 300 nm caused significant inhibition of synthesis of MAAs indicating that the action spectrum at these wavelengths may not have been satisfactorily resolved. We propose that a pterin is a good candidate for a photoreceptor chromophore as (1) reduced pterins present absorption spectra congruent with the action spectrum obtained; and (2) an inhibitor of the biosynthetic pathway of pterins and an antagonist of excited states of pterins, both depressed the photosensory efficiency of induction but not its chemosensory efficiency.  相似文献   

4.
Sub-micro-second time-resolved difference absorption spectra of a polar carotenoid analogue, 2-(all-trans-retinylidene)indan-1,3-dione (hereafter, we will call RetInd), were recorded in tetrahydrofuran at room temperature upon anthracene-sensitized triplet excitation. In addition to the typical Tn <-- T1 absorption spectrum of anthracene followed by that of RetInd, a novel transient species, which peaked at 670 nm, was detected. The lifetime and the population of the 670 nm species was not affected by the presence of oxygen but was quenched by the cation scavenger, triethylamine. Therefore, we have identified this species as a "cation". The transient 670 nm species was not generated by direct photoexcitation of RetInd in the absence of a triplet sensitizer. Therefore, this species was not generated via the T1 species of RetInd but rather via an "invisible state" of RetInd, which is generated by direct energy or electron transfer from T1 anthracene. This proposed pathway was confirmed by a singular-value decomposition followed by a global fitting analysis. The "cation" of RetInd shows vibrational structure in its absorption spectrum, and its lifetime was determined to be 15 micros. Chemical oxidation of RetInd in 2,2,2-trifluoroethanol (dichloromethane) produced a broad absorption band around 880 (1013) nm, which could be transformed into a shoulder around 640 (675) nm upon addition of increasing amounts of the oxidant, FeCl3. The former absorption band can be assigned to a radical cation, while the latter to a dication. Because of the spectral similarity, the 670 nm species can be assigned to the dication, and the "invisible state" is ascribed to the radical cation of RetInd. This is the first direct evidence for the production of a dication of a biological polyene moiety generated in non-halogenated solution following anthracene-sensitized excitation.  相似文献   

5.
Abstract— Trans-urocanic acid (UCA) is found in the upper layer of the skin and UV irradiation induces its photoisomerization to cis -UCA. Cis -UCA mimics some of the immunosuppressive properties of UV exposure. The wavelength dependence for in vitro photoisomerization of trans-UCA (15 μM) over the spectral range 250 nm-340 nm (10 nm intervals) was determined. The action spectrum revealed that maximal cis-UCA production occurred at 280 nm, which is red-shifted by 10-12 nm from its absorption peak at 268 nm and differs markedly from the reported action spectra for cis-UCA production in mouse skin in vivo , which peaks at 300-310 nm. The reasons for the red shift between the in vitro and in vivo action spectra are not clear. There is limited evidence suggesting that the UV absorption maximum of trans- UCA red shifts from 268 nm in vitro to 310 nm on interaction with stratum corneum proteins in vivo. This phenomenon was investigated by applying trans-UCA (2.5 mg/cm2) in an oil emulsion to isolated human stratum corneum. After incubation at 37°C for 1 h, the absorption spectra of stratum corneum with UCA and with oil only were compared using a Xe arc source and a spectrora-diometer. A moderate red shift in trans-UCA absorption from ∼268 nm to 280 nm was observed. In summary, we suggest that the 10-12 nm red shift between the UCA absorption spectrum peak and the action spectrum peak in vitro may be accounted for by the wavelength dependence of quantum yields reported over the 254-313 nm range. The red shift between the in vitro and in vivo photoisomerization action spectra may result from the 10 to 12 nm red shift in the absorption of UCA in association with stratum corneum proteins, combined with increasing quantum yields over the 254-313 nm range.  相似文献   

6.
Fifteen complexes of hypocrellin A (HA) with rare earth trivalent ions (except Pm3+) along with the complex of HA with Sc3+ were prepared, and their photodynamic activities, including absorption in the phototherapeutic window (600-900 nm); water-solubility; triplet lifetime; generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion radical (O2-*), and hydroxyl radical (OH*); generation of semiquinone anion radical; and affinity to DNA, as well as photosensitized damage on calf thymus DNA (CT DNA), were compared in detail using the UV-visible spectrum, fluorescence spectrum, spin-trapping EPR technique, and laser photolysis technique. All complexes exhibit a red-shifted absorption spectrum, an increased absorbance above 600 nm, improved water solubility, and an enhanced affinity to CT DNA over the parent HA. For ions that possess low-energy excited states, including Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+, the corresponding complexes show undetectable or nearly undetectable fluorescence, a triplet excited-state lifetime, generation of ROS, and photodamage in CT DNA. In contrast, for ions that do not possess low-energy excited states, including Sc3+, Y3+, La3+, Gd3+, and Lu3+, the corresponding complexes exhibit higher photodamage abilities with CT DNA with respect to HA, benefitting from both their comparable or even higher 1O2 quantum yields and an electrostatic affinity that is higher for DNA than HA.  相似文献   

7.
Novel sunscreens are required providing active protection in the UVA and UVB regions. On the other hand, there is an increasing concern about the photosafety of UV filters, as some of them are not sufficiently photostable. Avobenzone is one of the most frequently employed sunscreen ingredients, but it has been reported to partially decompose after irradiation. In the present work, photophysical and photochemical studies on a methylated avobenzone-derivative have shown that the diketo form is responsible for photodegradation. A transient absorption was observed at 380 nm after laser flash photolysis excitation at 308 nm. It was assigned to the triplet excited state of the diketo form, as inferred from quenching by oxygen and β-carotene. This transient also interacted with key building blocks of biomolecules by triplet–triplet energy transfer (in the case of thymidine) or electron transfer processes (for 2'-deoxyguanosine, tryptophan and tyrosine). Irradiation of the avobenzone derivative in the presence of a triazine UV-B filter (E-35852) diminished the undesirable effects of the compound by an efficient quenching of the triplet excited state. Thus, sunscreen formulations including triplet quenchers could provide effective protection from the potential phototoxic and photoallergic effects derived from poor photostability of avobenzone.  相似文献   

8.
Anecdotal reports suggest that the dihydropyridine calcium antagonist, nifedipine (NIF), may be phototoxic in human skin. We have studied NIF phototoxicity in vitro using UVA fluorescent tubes (Sylvania PUVA). NIF was phototoxic to Candida albicans and induced photohaemolysis both with NIF present during irradiation and with pre-irradiated drug. In V79 hamster fibroblasts, NIF (10 micrograms ml-1) was phototoxic MTT assay) 24 h after irradiation (0-112 kJ m-2); at 7.5 kJ m-2, about 70% of cells were damaged whilst at 37.5 kJ m-2, only about 45% of cells were damaged. A similar pattern was seen with pre-irradiated NIF. Absorption spectroscopy showed that the NIF absorption maximum (Amax approximately 340 nm) blue-shifted to 314 nm at low UVA doses (7.5 kJ m-2 or less) and red-shifted to 345 nm at higher doses (isosbestic point, 325 nm). Thin layer chromatography of irradiated NIF showed a single photoproduct (PP1; Amax approximately 314 nm) formed at 7.5 kJ m-2 or less which disappeared at higher UVA doses to give further photoproducts. PP1 was highly dark toxic to V79 cells (50% damage at about 5 micrograms ml-1) but PP1 pre-irradiated with UVA was non-toxic. Preliminary gas chromatography-mass spectroscopy studies suggest that PP1 is the nitroso derivative of NIF. These results indicate that NIF phototoxicity in vitro is partially mediated by initial formation of a toxic photoproduct (PP1) but, paradoxically, subsequent UVA irradiation may reduce phototoxicity. The NIF concentrations required to induce in vitro phototoxicity are much greater than therapeutic plasma levels. Unless there is skin accumulation of NIF or PP1, our in vitro results suggest that NIF may not be an important skin-photosensitizing agent in vivo.  相似文献   

9.
The formation and reactivity of the triplet state and free radicals of mefloquine hydrochloride (MQ) have been investigated by pulse radiolysis and flash photolysis. The excited triplet, cation radical and anion radical have been produced and their absorption characteristics determined. The triplet-triplet absorption spectrum of MQ showed a maximum at 430 nm, with a molar absorption coefficient of 3600 M(-1) cm(-1) and the quantum yield for intersystem crossing was determined to be close to unity. Deactivation of the triplet, in the absence of oxygen, led to the formation of MQ cation and/or anion radicals. The molar absorption coefficient of the cation radical at 330 nm was determined to be 2300 M(-1) cm(-1), whilst that for the anion radical was 2400 M(-1) cm(-1) at 620 nm and 3600 M(-1) cm(-1) at 350 nm. The molar absorption coefficients of the proposed neutral radical at 320 nm and 520 nm were 4000 M(-1) cm(-1) and 1300 M(-1) cm(-1) respectively. The quantum yield for the formation of singlet oxygen, sensitized by MQ triplet, was determined to be close to unity. Aqueous solutions of MQ were found to photoionize to yield hydrated electron and cation radical of MQ in a biphotonic process. The influences of pH, buffer concentration, oxygen concentration and addition of sodium azide on the formation and reactivity of the transients were evaluated. The reactions between MQ and solvated electrons and superoxide anion were also studied.  相似文献   

10.
Solutions of glucose are used as diluents for drugs in various drug infusions. When sterilized by heat small amounts of the substance 5-hydroxymethyl-2-furaldehyde (5-HMF) is produced from glucose. At a hospital ward such infusions may be exposed to irradiation; including UV-light. The photoreactivity of the furaldehyde is investigated. It is shown to photodestabilize the catecholamine isoprenaline. It is shown to be a producer, but also a consumer, of singlet oxygen. The excited triplet, cation and anion radical have been produced by pulse radiolysis and flash photolysis and their absorbance characteristics have been determined. The triplet absorption spectrum showed absorption bands at 320 and 430 nm with molar absorption coefficients of 4700 and 2600 M-1 cm-1, respectively. The anion radical showed absorption bands at 330 and 420 nm with molar absorption coefficients of 2000 and 300 M-1 cm-1, respectively. The cation radical had an absorption band at 320 nm with a molar absorption coefficient of 5000 M-1 cm-1. The quantum yield for the production of singlet oxygen, sensitized by the 5-HMF triplet, was determined to be 0.6, whilst the quantum yield for the triplet formation was 1.0. Aqueous solutions of 5-HMF were found to photoionize to yield the hydrated electron and the cation radical of 5-HMF in a biphotonic process. The influences of pH, buffer and glucose on the formation of transients were evaluated. The reactions between 5-HMF and the solvated electron, the hydroxyl radical and the superoxide were also studied.  相似文献   

11.
Photosensitized DNA damage participates in solar-UV carcinogenesis, photogenotoxicity and phototoxicity. A chemoprevention of photosensitized DNA damage is one of the most important methods for the above phototoxic effects. In this study, the chemopreventive action of xanthone (XAN) derivatives (bellidifolin [BEL], gentiacaulein [GEN], norswertianin [NOR] and swerchirin [SWE]) on DNA damage photosensitized by riboflavin was demonstrated using [32P]-5'-end-labeled DNA fragments obtained from genes relevant to human cancer. GEN and NOR effectively inhibited the formation of piperidine-labile products at consecutive G residues by photoexcited riboflavin, whereas BEL and SWE did not show significant inhibition of DNA damage. The four XAN derivatives decrease the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidative product of G, by photoexcited riboflavin. The preventive action for the 8-oxodGuo formation of these XAN derivatives increased in the following order: GEN>NOR>BEL>SWE. A fluorescence spectroscopic study and ab initio molecular orbital calculations suggested that the prevention of DNA photodamage is because of the quenching of the triplet excited state of riboflavin by XAN derivatives through electron transfer. This chemoprevention is based on neither antioxidation nor a physical sunscreen effect; rather, it is based on the quenching of a photosensitizer. In conclusion, XAN derivatives, especially GEN, may act as novel chemopreventive agents by the quenching mechanism of an excited photosensitizer.  相似文献   

12.
In this work, we investigate the nonlinear absorption dynamics of Zn phthalocyanine in dimethyl sulfoxide (DMSO). We used single pulse and pulse train Z-scan techniques to determine the dynamics and absorption cross-sections of singlet and triplet states at 532 nm. The excited singlet state absorption cross-section was determined to be 3.2 times higher than the ground state one, giving rise to reverse saturable absorption. We also observed that reverse saturable absorption occurs from the triplet state, after its population by intersystem crossing, whose characteristic time was determined to be 8.9 ns. The triplet state absorption cross-section determined is 2.6 times higher than the ground state one. In addition, we used the white light continuum Z-scan to evaluate the singlet excited state spectrum from 450 to 710 nm. The results show two well-defined regions, one above 600 nm, where reverse saturable absorption is predominant. Below 600 nm, we detected a strong saturable absorption. A three-energy-level diagram was used to explain the experimental results, leading to the excited state absorption cross-section determination from 450 nm up to 710 nm.  相似文献   

13.
The photostability and photophysical parameters of an aqueous solution of the mycosporine-like amino acid (MAA) porphyra-334 have been determined. The excited-singlet state lifetime, measured by time-correlated single photon counting, was 0.4 ns. Laser flash photolysis experiments at 355 nm did not show any transient species. The triplet state of porphyra-334 was sensitized by triplet-triplet energy transfer. The T-T absorption spectrum was determined and the maximal absorption coefficient at 440 nm was estimated to be 1 x 10(4) M(-1) cm(-1). In this way an upper limit for the intersystem crossing quantum yield was determined. The very low quantum yield of fluorescence (phiF = 0.0016) and triplet formation (phiT < 0.05) together with a photodecomposition quantum yield of 2-4 x 10(-4), in the absence and the presence of oxygen respectively, can be explained by a very fast internal conversion process. These results support the photoprotective role assigned to this MAA in living systems.  相似文献   

14.
Photoaddition to DNA by Nonintercalated Chlorpromazine Molecules   总被引:3,自引:1,他引:2  
Chlorpromazine (CPZ) forms photoadducts with DNA and photosensitizes DNA strand breaks. These reactions may be responsible for the reported photomutagenicity of CPZ and for the well-known cutaneous and ocular phototoxicity associated with this drug. We have investigated whether CPZ molecules that are intercalated between base pairs in double-stranded (ds) DNA are the absorbing species for the photoaddition reaction. Quenching of CPZ fluorescence by ds-DNA gave nonlinear Stern-Volmer plots, indicating that more than one type of complex is formed. Linear dichroism spectra of CPZ in the presence of ds-DNA showed a minimum at 345 nm, indicating that the absorption maxima of intercalation complex(es) are red-shifted compared to the absorption maximum of free CPZ at 307 nm. The sum of the absorption of all CPZ complexes with ds-DNA, obtained from dialysis experiments, was broadened and maximized at about 315 nm, indicating that complexes not involving intercalation dominate the absorption spectrum at X < 350 nm. The wavelength dependence for covalent binding of CPZ to DNA was determined by irradiating 3H-CPZ in the presence of ds-DNA at 310, 322, 334, 346, 358 and 370 nm. The resulting spectrum correlated closely with the absorption spectrum of nonintercalated CPZ rather than with the spectrum of intercalated CPZ, indicating that the latter species is not the chromophore for the photoaddition reaction.  相似文献   

15.
A wild-type Escherichia coli K-12 strain was irradiated using monochromatic radiation in the range 254 to 405 nm. A measure of the cell membrane damage induced at each wavelength was investigated by comparing cell viability after irradiation on nutrient agar and on minimal medium containing either a low or high inorganic salt concentration. An action spectrum for lethality and for cell membrane damage was then determined. From 254 to 310 nm lethality closely corresponded to the absorption spectrum of DNA, and there was no indication of membrane damage. However, above a wavelength of 310 nm, the direct absorption of radiation by DNA could not account for the sensitivity observed. Moreover, at wavelengths longer than 310 nm, cell membrane damage was induced and by an increasing factor up to a peak at 334 nm. At the longer wavelengths of 365 and 405 nm, there was a gradual decrease from the peak of damage to cell membranes induced by 334 nm radiation. These results indicate that cell membrane damage may contribute significantly to near-UV radiation-induced cell lethality in wild-type E. coli K-12.  相似文献   

16.
Monomers and aggregates of Merocyanine 540 (MC540) in water are able to photoisomerize. The shape of the photoisomer absorption spectrum is very similar to that of the ground state. Triplet state of MC540 in water has been produced by energy transfer from triplet anthracene and displays a broad absorption spectrum between 600 and 700 nm. The triplet state may also be produced by direct excitation of MC540 with UV light. However, when the dye is excited by visible light, no triplet state absorbance in the red could be detected so that the triplet yield of MC540 in water seems to be excitation wavelength dependent.  相似文献   

17.
Laser flash photolysis of 7-(piperazin-1-yl) fluoroquinolones leads to the formation of a triplet excited state (3A*) at the end of the pulse (lambdamax 520, 610, and 620 nm for enoxacin, ciprofloxacin, and norfloxacin, respectively). Phosphate and bicarbonate buffers react with 3A* to form a secondary triplet (3B*, reaction rates (0.8-9.9) x 108 M-1 s-1), whose T-T absorption is red-shifted (lambdamax 670 nm for enoxacin, 700 nm for ciprofloxacin and norfloxacin). The formation of a secondary triplet is not a common process and disagrees with previous work suggesting that electron transfer occurs between phosphate buffer and the primary triplet excited state with the formation of the anion radical of the fluoroquinolone (FQ.-). We have shown that the FQ.- transient absorption spectrum is quite distinct from that of 3B*. The photophysical characteristics of 3B* have been determined by energy transfer to naproxen, and it has been found that its energy is lower than that of 3A*.  相似文献   

18.
Abstract— The triplet-triplet absorption spectrum of the 4'5' psoralen-thymine mono-adduct has been determined in water and methanol using the technique of laser flash photolysis. The extinction coefficient of the triplet was measured by the energy-transfer method with retinol triplet as standard, and used to determine the singlet → triplet intersystem crossing quantum yield for 353 nm excitation. Reaction rate constants for mono-adduct triplet with thymine and tryptophan were measured in water. Long-lived transient absorptions detected after quenching the mono-adduct triplet with thymine and tryptophan are assigned mainly to the corresponding mono-adduct radical anion, whose spectrum was established in separate pulse radiolysis studies of the mono-adduct in aqueous formate.
The significant singlet → triplet quantum yields found for the mono-adduct might be consistent with the involvement of triplet excited mono-adduct in DNA cross-link formation, as also may be the high reactivity obtained for the triplet with thymine. The initial quenching products observed resulted from a charge-transfer reaction.  相似文献   

19.
Photolysis (λ > 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N(2) at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm(-1), |E/hc| = 0.0554 cm(-1); |D/hc| = 0.579 cm(-1), |E/hc| = 0.0315 cm(-1)). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon-an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λ(max) = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C(5)H(4)S or C(5)H(4)O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively).  相似文献   

20.
Abstract— The action spectrum (313–435 nm) for killing Chinese hamster ovary cells containing bromo-deoxyuridine substituted DNA and treated with Hoechst 33258 was very similar to the absorption spectrum of the dye bound to chromatin, indicating that sensitization was mediated through direct absorption of radiation by the dye. The ratio of sensitization cross sections for 365 nm (plus dye) to 313 nm (no dye) was approx. 30 while this ratio for strand breakage was about one. These results are in agreement with the hypothesis that strand breaks are not the major class of lethal photoproducts induced via Hoechst 33258 sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号