首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
采用低压微波消解系统,以HNO3、HCl、H2O2、HClO4和HF消解样品,用H3BO3络合过量的F-,并研究了Cl-对测汞的影响、共存元素的干扰、H3BO3对各元素的影响,建立了低压微波消解─ICP-AES法测定聚氯乙烯塑料及其制品中Pb、Cd、Cr和Hg的方法。Pb、Cd、Cr和Hg的检出限(3σ)分别为:0.012、0.002、0.006、0.020μg/mL,相对标准偏差为0.5%~4.0%,回收率为95%~101%。该方法可推广应用到其它塑料中Pb、Cd、Cr和Hg的测定,已应用于实际的检测工作。  相似文献   

2.
建立电感耦合等离子体质谱(ICP–MS)测定空气PM2.5中的Pb和Cd元素的分析方法。采用连续β射线–DHS PM2.5大气颗粒物浓度监测仪采集空气中的PM2.5,以智能石墨消解PM2.5滤膜样品,ICP–MS测定其中的Pb和Cd元素含量。在优化的仪器条件下,元素Pb和Cd标准曲线的线性相关系数均为0.999 9,检出限分别为0.018,0.52ng/m3,满足HJ 657–2013的要求。Pb和Cd的加标回收率分别为95.8%~101.4%,99.3%~104.9%,测定结果的相对标准偏差分别为4.20%和2.38%(n=6)。对滤膜标准样品进行了测定,测定结果与标准值一致。该方法测定结果准确、可靠,可用于测定空气PM2.5中的Pb和Cd。  相似文献   

3.
建立了微波消解–石墨炉原子吸收光谱法测定污水处理厂进出水和污泥中重金属Cd,Pb的方法。分别向污水样品中加入5.0 mL硝酸,污泥样品中加入4.0 mL硝酸和2.0 mL双氧水,放入微波消解炉中进行消解。消解好的样品用1%NH_4H_2PO_4作为基体改进剂,在0.5%HNO_3介质中采用塞曼扣除背景,石墨炉程序升温方式进行Cd,Pb的原子化,用石墨炉原子吸收光谱法测定Cd,Pb的含量。Cd,Pb的质量浓度分别在0~2.00μg/L,0~40.0μg/L范围内与其吸收峰高呈良好的线性关系,线性相关系数分别为0.999 1,0.999 6。Cd,Pb检出限分别为0.104 9,0.394 5μg/L,测定结果的相对标准偏差分别为1.34%~3.61%,2.12%~2.80%(n=11),加标回收率分别为98.2%~102.6%,94.0%~100.4%。该方法简单,高效,结果准确度高,重现性好,适用于污水处理厂的进出水和污泥中重金属铅和镉的检测。  相似文献   

4.
林光西  蒋萧茹 《分析试验室》2014,(11):1335-1337
采用黄原脂棉富集技术,建立了电感耦合等离子质谱法测定海水中重金属Cu,Pb,Zn,Co,Cd含量的方法。完善前处理条件,优化仪器工作参数,选取Rh,Ir作为内标元素,有效克服基体效应及仪器波动影响。Cu,Pb,Zn,Co,Cd的检出限分别为1.26,0.21,0.24,0.0027,0.0051μg/L,RSD为0.77%~3.3%,回收率为87.2%~96.0%。方法适用于海水中重金属元素的含量测定。  相似文献   

5.
建立微波消解样品,石墨炉原子吸收光谱法测定鱼肉和河蚌中重金属Pb,Cd,Cr,Cu,Ni含量的方法。优化了石墨炉原子吸收光谱法测定条件,在最佳实验条件下,选用磷酸二氢铵作为Pb,Cd,Cr,Cu的基体改进剂,抗坏血酸作为Ni的基体改进剂。Pb,Cd,Cr,Cu,Ni的检出限分别为0.05,0.01,0.05,0.05,0.07μg/g,实际样品测定结果的相对标准偏差为6.3%~14.5%(n=6),加标回收率为84.5%~113.0%。测定了牡蛎标准参考样,测定值在标准值可接受范围内。该方法检出限低、准确度高,适用于鱼类、河蚌样品中重金属含量的分析。  相似文献   

6.
以ABS塑料为研究对象,采用微波消解法进行样品的前处理,使用电感耦合等离子体发射光谱法测定ABS塑料中Pb、Cd、Hg,结果表明,Pb、Cd、Hg加标回收率均在95~105%之间,测试精密度均小于3%,该方法在缩短样品前处理时间的同时得到较高的元素消解回收率和较为理想的精确度,适用于ABS塑料中重金属含量的快速测定。  相似文献   

7.
以ABS塑料为研究对象,采用微波消解法进行样品的前处理,使用电感耦合等离子体原子发射光谱(ICP-AES)法测定ABS塑料中Pb、Cd、Hg,结果表明,Pb、Cd、Hg加标回收率均在95.0%~105%,测定相对标准偏差(RSD)均小于3%,方法在缩短样品前处理时间的同时得到较高的元素消解回收率和较为理想的精密度,适用于ABS塑料中重金属含量的快速测定。  相似文献   

8.
提出了石墨炉原子吸收光谱法同时测定小鼠肝中痕量Pb和Cd的方法。以8-羟基喹啉为络合剂,在pH 9.0时,用Triton X-100浊点萃取富集样品中的Pb和Cd。用NH4H2PO4作为基体改进剂测定Pb和Cd,Pb和Cd的检出限(3s/k)分别为0.103μg/L和0.0136μg/L,相对标准差(n=6)分别为1.4%,0.73%。对于10 mL样品溶液的富集倍数分别为7.1,9.3。利用该法分别测定了小鼠肝中的Pb和Cd的含量,加标回收率分别为96.4%~97.1%和101.3%~103.2%。  相似文献   

9.
建立了1种检测油漆、油墨中Pb、Cd、Cr(Ⅲ)、Cr(Ⅵ)含量的方法.用电感耦合等离子体发射光谱法(ICPAES)测定其中的铅、镉、总铬含量,方法的精密度小于6%,加标回收率为96.2%~100.2%.用二苯碳酰二肼分光光度法测定Cr(Ⅵ),其方法的加标回收率为80.0%~90.0%.X射线光电子能谱法(XPS)分析油墨中铬的形态主要为三价.实验结果表明:油墨中Pb含量低于0.20 mg/kg,Cd含量低于0.04 mg/kg,Cr(Ⅵ)含量低于2.00 mg/kg;油漆中Cd含量低于6.00 mg/kg,均符合ASTM F963-2011美国玩具产品标准要求.8种油漆样品中,有6种铅含量超过90 mg/kg,有1种油漆Cr(Ⅵ)含量高达1.33×104mg/kg,不符合ASTM F963-2011标准.Pb、Cd、Cr(Ⅵ)检出限分别为0.04、0.2、2.0 mg/kg.  相似文献   

10.
采用预镀铋膜法制得铋膜修饰碳糊电极,当沉积时间为540s得到最优铋膜。采用差分脉冲伏安法(DPV)实现了对痕量Pb2+、Cd2+的同时测定。优化了DPV测定条件,当富集时间为150s、富集电位为-1.25V、HAc-NaAc缓冲底液的pH为4.5时,Pb2+、Cd2+的峰电流最大。在最优的实验条件下,Pb2+和Cd2+的峰电流与其浓度呈良好的线性关系,线性相关系数R分别为0.9912和0.9937,线性范围分别为1~10μmol/L和5~50μmol/L,Pb2+和Cd2+的检出限分别为0.32μmol/L和2.01μmol/L。对实际废水样品进行了加标回收实验,其中Pb2+和Cd2+的回收率分别为98.4%~102.6%和95.4%~104.6%。  相似文献   

11.
Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors' laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd, Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb.  相似文献   

12.
This method was developed to improve sensitivity and eliminate time consuming, evaporative pre-concentration in AOAC Method 973.82 and American Society for Testing and Materials method C738 for testing foodware. The method was developed using leach solutions obtained by leaching 9 differently decorated ceramic vessels with 4% acetic acid for 24 h at room temperature. Lead and cadmium concentrations in leach solutions were 0.005-17,600 and 0.0004-0.500 microg/mL, respectively. Concentrations were determined using peak area, phosphate chemical modifier (8.3 microg PO4(-3)), and a standard curve for quantitation. Optimized pre-atomization and atomization temperatures were 1,300 and 1,800 degrees C, respectively, for Pb and 1,100 and 1,700 degrees C, respectively, for Cd. Characteristic masses (mo) were 10 and 0.4 pg for Pb and Cd, respectively. Precision of repeated analyses of calibration solutions was < or =3% relative standard deviation. Precision of duplicate leach solution analyses on different days was 0-9% relative difference. Recovery from fortified leach solutions was 96-106%. Results obtained by this method agreed 92-110% with those of confirmatory analyses. Results of certified reference material solutions agreed 94-100% with certificate values. Pb and Cd limits of quantitation (LOQ) were 0.005 and 0.0005 microg/mL, respectively. Results from 3 trial laboratories for 4 leach solutions containing Pb and Cd concentrations of 0.017-1.47 and <0.0005-0.0864 microg/mL, respectively, agreed 89-102% with results of the author. Two attributes of this method were noteworthy: (1) Background absorbance due to organic matter was entirely absent from atomization profiles, making the use of short pre-atomization hold times (2 s) possible. (2) Instrument precision was excellent and only one determination per solution was needed. Acceptance criteria for quality control measurements and a practical procedure for estimating the method LOQ during routine regulatory analyses are described.  相似文献   

13.
A method for the simultaneous determination of aluminum (Al), cadmium (Cd) and lead (Pb) in whole blood has been developed by using simultaneous atomic absorption spectrometry (SIMAAS) with oxygen charring. The optimized conditions for the simultaneous determination of Al, Cd and Pb were obtained in the presence of palladium (Pd) as the chemical modifier, using 600 °C and 2400 °C as the pyrolysis and the atomization temperature, respectively. The whole blood samples were diluted 1+5 (v/v) directly with 0.1% (v/v) Triton X‐100. Oxygen was employed to eliminate the interference of carbonaceous residues in the charring step before pyrolysis. The calibration curves were carried out with aqueous standard solutions and the linear ranges were 0–40 ng mL−1, 0–4 ng mL−1 and 0–40 ng mL−1 for Al, Cd and Pb, respectively. The detection limits were 0.96 ng mL−1 (19.2 pg) for Al, 0.03 ng mL−1 (0.6 pg) for Cd and 0.60 ng mL−1 (12.0 pg) for Pb. The spiked recoveries of Al, Cd and Pb in whole blood were 98.0%, 100.0% and 101.7%, respectively. The accuracy of the proposed method was evaluated with the analysis of a whole blood certified reference material (Seronorm, level 2). The found concentrations were in agreement with the recommended values. The proposed method has been successfully applied to the simultaneous determination of Al, Cd and Pb in whole blood of healthy volunteers before and after eating barbecued foods.  相似文献   

14.
以氩电弧等离子体法制备的碳包铁纳米粒子为固相萃取材料,采用等离子体原子发射光谱法(ICP-AES)系统研究了该材料对Cr、Ni、Cd、Pb离子的吸附性能,并确定了最佳吸附和洗脱条件。实验结果表明:当pH值为8.0~9.0时,分析物均可被碳包铁纳米粒子定量吸附;采用酸性溶液(pH=1.0~2.0)可将吸附在碳包铁纳米粒子上的金属离子完全脱附。该法对Cr、Ni、Cd、Pb的检出限分别为3.6、4.1、1.1、9.8μg/L,Cr、Ni、Cd的线性范围为1~500μg.L-1,Pb的线性范围为10~1 000μg.L-1,线性相关系数均大于0.999。方法用于自来水中Cr、Ni、Cd、Pb离子的测定,回收率可达到93%~105%;碳包铁纳米粒子对Cr、Ni、Cd、Pb离子的吸附量分别为3.6、4.8、6.3、2.1 mg/g。  相似文献   

15.
直接测定人体血镉和血铅较为困难。本文介绍用铂作基体改进剂以提高镉、铅的灰化温度,在灰化阶段除去产生高背景吸收的蛋白,而不发生镉、铅的挥发损失。实现了不需消化样品、络合提取等复杂的化学前处理,用石墨炉原子吸收法和校正曲线直接测定。同时应用衬钽技术,大大延长了石墨管的使用寿命。  相似文献   

16.
A multi-element graphite furnace atomic absorption spectrometry (GFAAS) method was elaborated for the simultaneous determination of As, Cd, Cu, and Pb in wine samples of various sugar contents using the transversally heated graphite atomizer (THGA) with end-capped tubes and integrated graphite platforms (IGPs). For comparative GFAAS analyses, direct injection (i.e., dispensing the sample onto the IGP) and digestion-based (i.e., adding oxidizing agents, such as HNO(3) and/or H(2)O(2) to the sample solutions) methods were optimized with the application of chemical modifiers. The mixture of 5 microg Pd (applied as nitrate) plus 3 microg Mg(NO(3))(2) chemical modifier was proven to be optimal for the present set of analytes and matrix, it allowing the optimal 600 degrees C pyrolysis and 2200 degrees C atomization temperatures, respectively. The IGP of the THGA was pre-heated at 70 degrees C to prevent the sputtering and/or foaming of sample solutions with a high organic content, dispensed together with the modifier solution, which method also improved the reproducibility of the determinations. With the digestion-based method, the recovery ranged between 87 and 122%, while with the direct injection method it was between 96 and 102% for Cd, Cu, and Pb, whereas a lower, compromise recovery of 45-85% was realized for As. The detection limits (LODs) were found to be 5.0, 0.03, 1.2, and 0.8 microg l(-1) for As, Cd, Cu, and Pb, respectively. The characteristic mass (m(0)) data were 24 pg As, 1.3 pg Cd, 13 pg Cu, and 35 pg Pb. The upper limits of the linear calibration range were 100, 2, 100, and 200 microg l(-1) for As, Cd, Cu, and Pb, respectively. The precisions were not worse than 4.8, 3.1, 3.7, and 2.3% for As, Cd, Cu, and Pb, respectively. For arsenic, a higher amount of the modifier (e.g., 20 microg Pd plus 12 microg Mg(NO(3))(2)) could be recommended to overcome the interference from the presence of sulphate and phosphate in wines. Although this method increased the sensitivity for As (m(0)=20 pg), it also enhanced the background noise, thus only a slight improvement in the LOD of As (3.9 microg l(-1)) was realized. For the 35 red and white wine samples studied, the highest metal contents were observed for Cu ranging from 20 to 640 microg l(-1) (average: 148 microg l(-1)), followed by Pb from 6 to 90 microg l(-1) (average: 32.3 microg l(-1)), and Cd from 0.05 to 16.5 microg l(-1) (average: 1.06 microg l(-1)), whereas the As content was below the LOD. This wide fluctuation in the trace metal content could be associated with the origin of wines from various regions (i.e., different trace metal level and/or quality of soil, and/or anthropogenic impact), and with diverse materials (e.g., additives and containers) involved in the wine production processes. The Cu content of wine samples was significantly correlated with Pb, whereas its weak anti-correlation was found with Cd. Interestingly, the level of Pb was anti-correlated with the year of production of the wines. This is likely due to the gradual decrease in the Pb content of soils of vineyards by time, which certainly causes less Pb-uptake of the grape plant, thus a decrease in the Pb content of wines as well.  相似文献   

17.
土壤样品经硝酸、氢氟酸和过氧化氢加热消解,采用石墨炉原子吸收光谱法测定其中铅和镉的含量。以磷酸铵作为基体改进剂,铅和镉的灰化温度分别为400℃,250℃,原子化温度分别为2 100℃,1 800℃。铅和镉的质量浓度分别在0.50~50.0,0.10~2.5μg.L-1范围内与其吸光度呈线性关系,检出限依次为6.5,0.4pg。应用此法分析了4个土壤标准样品,测定值与标准值相符,相对标准偏差(n=6)分别在1.5%~6.3%和2.3%~5.1%之间。铅、镉的加标回收率分别在85.4%~103.2%,91.5%~102.3%之间。  相似文献   

18.
E.J. Daftsis 《Talanta》2007,71(2):722-730
An electrothermal atomic absorption method (ETAAS) for direct determination of several toxic trace elements (Cd, Co, Cr, Pb) in human blood fractions was developed, because of increasing interest of toxic elements distribution in various blood constituents. Zeeman background correction and pyrolitically coated graphite tubes with L’vov platforms were used. Centrifugation was employed for the separation of blood fractions at different centrifugal conditions at 1200 × g and 3000 × g. The samples were acid-digested by HNO3 in closed tubes under high temperature and pressure before injection into graphite furnace. Two common modifiers were used and were compared for their effectiveness to the determination of each analyte at the examined blood fractions. The effect of modifier, matrix, calibration technique and peak characteristic (peak area and peak height) on the total variation of the method was examined by analysis of variance. The sensitivity and recovery (Cd 98-110%, Cr 93-109%, Co 95-106% and Pb 91-107%) of the developed method are presented for the various fractions. The overall precision (R.S.D.) using peak area (Cd 6.3-13.1%, Cr 8.2-13.9%, Co 7.4-8.5% and Pb 7.0-11.8%) and peak height measurements (Cd 1.1-9.3%, Cr 6.5-13.5%, Co 6.5-17.3% and Pb 6.9-14.8%) are also presented for pellet and supernatant solution. Standard addition technique was more accurate in terms of analyte recovery.  相似文献   

19.
将水样浓缩10倍处理,用空气-乙炔火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉元素的含量,在0~1.00 mg/L范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990.最低检出限分别为0.001、0.01、0.0008、0.0005 mg/L,相对标准偏差分别为1.16%、1.22%、1.15%、1.16%.该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于7.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号