首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The crystal structure of natural titanium-containing ludwigite has been refined. The unit-cell parameters are a = 9.260 ± 0.002 Å, b = 12.294± 0.002 Å, c = 3.0236± 0.0005 Å, sp. gr. Pbam, and R = 0.0288. The observed cation distribution over the M1-M4 positions corresponds to the structural formula (Mg0.5)(Mg1.0)(Mg0.338Fe 0.162 2+ )(Fe 0.47 3+ Ti 0.21 4+ Mg 0.15 2+ Al 0.10 3+ Fe 0.07 2+ (BO3)O2. Highly charged titanium ions in the M4 position are balanced mainly with magnesium and not with divalent iron ions.  相似文献   

2.
The crystal and molecular structures of Ru3(CO)6{μ 3-OPPh2C2H(C6H4)PPhCH2PPh}-(μ 3-OPPh2)Ph (1) and Ru3(CO)6{μ-OPPh2C2H(C6H4)PPhO}(μ-PPh2)(μ-PPh2O) (2) have been determined by single crystal X-ray diffraction. Both complexes contain oxygen atoms oxidatively inserted into phosphorus–ruthenium bonds, and unique σ/π multidentate ligands formed from C $---{\text{H}}$ H and C $--$ P bond cleavage in bis(diphenylphosphino)acetylene and bis(diphenylphosphino)methane. Complex 1 crystallized in the triclinic space group ${\bar 1}$ , with lattice parameters a = 11.642(4) Å, b = 15.018(5) Å, c =16.587(5) Å, α = 2.48(3)°, β = 76.47(2)°, γ = 70.35(3)°, V = 2651.1(15) Å3, Z = 2. Complex 2 crystallized in the centered monoclinic space group, C2/c, with lattice parameters a = 34.467(4) Å, b = 14.274(2) Å, c = 23.258(3) Å, β = 5.29(1)°, V = 11394(3) Å3, Z = 8.  相似文献   

3.
The benzylidyne-capped cluster PhCCo3(CO)9 (1) reacts with the diphosphine ligand 2,3-bis(diphenylphosphino)maleic acid-thioanhydride (bmata) to afford ultimately the new cluster ${\text{Co}}_{\text{3}} ({\text{CO)}}_{\text{6}} [\mu _2 ,\eta ^2 ,\eta ^1 {\text{ - C(Ph)}}{\text{(O)](}}\mu _2 {\text{ - PPh}}_{\text{2}} )$ (3) in low yield under thermolysis conditions or by Me3NO activation of PhCCo3(CO)9. The intermediate cluster compound PhCCo3(CO)7(bmata) (2) has been confirmed by IR spectroscopy and is shown to give ${\text{Co}}_{\text{3}} ({\text{CO)}}_{\text{6}} [\mu _2 ,\eta ^2 ,\eta ^1 {\text{ - C(Ph)}}{\text{(O)](}}\mu _2 {\text{ - PPh}}_{\text{2}} )$ upon heating. Cluster 3 has been isolated and characterized in solution by IR and 31P NMR spectroscopies, and the solid-state structure of 3 was established by X-ray diffraction analysis. ${\text{Co}}_{\text{3}} ({\text{CO)}}_{\text{6}} [\mu _2 ,\eta ^2 ,\eta ^1 {\text{ - C(Ph)}}{\text{(O)](}}\mu _2 {\text{ - PPh}}_{\text{2}} )$ crystallizes in the triclinic space group P ${\bar 1}$ , a = 11.6053(8) Å, b = 11.8438(8) Å, c = 15.099(1) Å, α = 105.169(5), β = 90.530(5), γ = 104.976(6), V = 1928.5(2) Å3, Z = 2, and d calc = 1.578; R = 0.0442, R w = 0.481 for 2591 observed reflections with I > 3σ (I). The cyclic voltammetric properties of 3 have been investigated and are contrasted with the related bma-derived cluster ${\text{Co}}_{\text{3}} ({\text{CO)}}_{\text{6}} [\mu _2 ,\eta ^2 ,\eta ^1 {\text{ - }}{\text{(O)OC(O)](}}\mu _2 {\text{ - PPh}}_{\text{2}} )$ .  相似文献   

4.
Reflections serving as indicators of the types of packets forming crystal structures of many layered semiconductors have been revealed in diffraction patterns. It is found that the values l for the strongest reflection in series 000l and 00l, as well as the next to the strongest reflection in series \(hh\bar 2\bar hl\) (h = const) and 0kl (k = const) for hexagonal and monoclinic structures, respectively, determine the number of polyhedral (Tand O) cation-filled layers per cell and indicate the types of packets TOT \(TO\bar TE\) , \(TO\bar T\bar TE\) , \(TOO\bar TE\) , \(TTO\bar T\bar TE\) , \(OOE_1 TO\bar TE_1 \) and OOE \(OOE_1 TO\bar TE_2 TO\bar TE_1 \) , where T and \(\bar T\) are inversely oriented tetrahedra, O is an octahedron, E is an empty interpacket layer, and E1 and E2 are partially filled (to less than 1/3) interpacket layers.  相似文献   

5.
Single crystals of UO2(n-C3H7COO)2(H2O)2 (I) and Mg(H2O)6[UO2(n-C3H7COO)3]2 (II) are synthesized. Their IR-spectroscopic and X-ray diffraction studies are performed. Crystals I are monoclinic, a = 9.8124(7) Å, b = 19.2394(14) Å, c = 12.9251(11) Å, β = 122.423(1)°, space group P21/c, Z = 6, and R = 0.0268. Crystals II are cubic, a = 15.6935(6) Å, space group $Pa\bar 3$ , Z = 4, and R = 0.0173. The main structural units of I and II are [UO2(C3H7COO)2(H2O)2] molecules and [UO2(C3H7COO)3]? anionic complexes, respectively, which belong to AB 2 01 M 2 1 (I) and AB 3 01 (II) crystal chemical groups of uranyl complexes (A = UO 2 2+ , B 01 = C3H7COO?, and M 1 = H2O). A crystal chemical analysis of UO2 L 2 · nH2O compounds, where L is a carboxylate ion, is performed.  相似文献   

6.
Compounds (CN3H6)2[UO2(OH)2(NCS)]NO3 (I) and β-Cs3[UO2(NCS)5] (II) are synthesized and studied by IR spectroscopy and single-crystal X-ray diffraction. I and II crystallize in the orthorhombic system. For I, a = 12.2015(13) Å, b = 7.3295(8) Å, c = 16.310(2) Å, space group Pnma, Z = 4, and R = 0.0327; for II, a = 21.7891(6) Å, b = 13.5120(3) Å, c = 6.8522(2) Å, space group Pnma, Z = 4, and R = 0.0268. In structure I, complex groups form infinite chains [UO2(OH)2(NCS)] n n? belonging to the AM 2 2 M 1 crystal chemical group of uranyl complexes (A = UO 2 2+ , M 2 = OH?, and M 1 = NCS?). The main structural elements of crystals II are mononuclear [UO2(NCS)5]3? groups belonging to the AM 5 1 group of uranyl complexes (A = UO 2 2+ and M 1 = NCS?). In I and II, uranium-containing complexes are connected with outer-sphere cations by electrostatic interactions, and in I a system of hydrogen bonds also contributes to their binding. Specific features of the packing of complex [UO2(NCS)5]3? groups in the structures of two modifications of Cs3[UO2(NCS)5] are discussed.  相似文献   

7.
Thermolysis of Ru3(CO)12 with 2,3-bis(diphenylphosphino)maleic anhydride (bma) in toluene solution gives the new compounds Ru3(CO)10(bma) (2), Ru2(CO)6(bma) (3), and (4). All compounds have been isolated and characterized in solution by IR and31P NMR spectroscopy. The solid-state structures of2, as the monohydrate, and4 were established by X-ray crystallography. Ru3(CO)10(bma)·H2O crystallizes in the monoclinic space groupC2/c,a=12.741(2) Å,b=19.548(2) Å,c=32.973(4) Å, β=96.847(9)°,V=8154(2) Å3,Z=8,d calc=1.740 g cm?3;R=0.046,R w =0.051 for 2541 observed reflections withl>3σ(l). The bma ligand in2 is bound to the triruthenium frame in a bridging fashion, with equatorially disposed PPh2 groups. The X-ray structure of2 reveals an extreme twisting of the maleic anhydride ring away from the plane defined by the plane of the three ruthenium atoms, along with a significant lengthening of the maleic anhydride C=C π bond. crystallizes in the monoclinic space groupP21/c,a=9.3113(5) Å,b=18.164(1) Å,c=20.097(1) Å, β-102.021(4)°,V=3324.5(3) Å3,Z=4,d calc=1.671 g cm?3;R=0.024,R w =0.030 for 3499 observed reflections withl>3σ(l). The presence of the μ2 moiety and P?C (maleic anhydride) bond cleavage attendant in the formation of4 are confirmed by X-ray analysis. The relationship of the compounds3 and4 to the dimeric compounds Ru2(CO)6(bpcd) and [where bpcd=4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione] is discussed. Independent studies dealing with Ru3(CO)10(bma) (bridging isomer) have shown that cluster2 is stable in toluene solution at elevated temperature and does not afford compounds3 and4, suggesting the intermediacy of the putative chelating isomer of Ru3(CO)10(bma) (1) as the source of3 and4.  相似文献   

8.
New sodium iron orthophosphate NaFe 4 2+ Fe 3 3+ [PO4]6 was synthesized by the hydrothermal method. The crystal structure (sp. gr. $P\bar 1$ ) was established by the heavy-atom method, with the exact chemical formula of the compound being unknown; R hkl = 0.0492, R whkl = 0.0544, S = 0.52. The new compound is analogous to iron phosphate Fe 3 2+ Fe 4 3+ [PO4]6 studied earlier. However, these two compounds differ in the Fe2+ and Fe3+ contents, because Na+ ions in the new compound are located at the centers of symmetry not occupied earlier.  相似文献   

9.
In the process of studying the phase formation in the Li2CO3-CaO-B2O3-NaCl system, new Ca,Na, Li-carbonate-borate has been synthesized under hydrothermal conditions. The crystal structure of carbonate-borate with the crystallochemical formula Ca4(Ca0.7Na0.3)3(Na0.70.3)Li5[B 12 t B 10 Δ O36(O,OH)6](CO3)(OH) · (OH,H2O) was refined to R hkl = 0.0716 by the least squares method in the isotropic approximation of atomic thermal vibrations without the preliminary knowledge of the chemical composition and the formula (sp. gr. R3, a rh = 13.05(2) Å, α = 40.32(7)]°, V = 838(2) Å3, a h = 8.99(2), c h = 35.91(2) Å, V = 2513(2) Å3, Z = 3, d calcd = 2.62 g/cm3, Syntex P $\bar 1$ diffractometer, 3459 reflections, 2θ-θ method, λMo). The structure has a new boron-oxygen radical [B 12 t B 10 Δ O36(O,OH)6] ∞∞ 15? , a double layer of nine-membered [B 6 t B 3 Δ O15(O,OH)3]7.5?-rings bound by BO3-triangles, and twelve-membered [B 6 t B 6 Δ O19.5(O,OH)3]7.5? rings. This allows one to relate this compound to megaborates with complex boron-oxygen radicals. The structure is built from two types of blocks consisting of Ca,Na,B-and Li,B-polyhedra alternating along the c-axis, which explains the perfect cleavage of the crystals along the (0001) plane.  相似文献   

10.
A normalizer of the symmetry group defined on a three-dimensional sphere S 3 of rotation is considered in the four-dimensional Euclidean space E 4. The sphere S 3 is treated as the first approximation of the three-dimensional crystallographic space. The analysis of the normalizer N of the direct product G = G 1 × G 2 of space crystallographic rotation groups G 1 and G 2 is reduced to the study of transformations characterized by the positive determinants of the subgroups N + (G 1 and N +(G 2). These subgroups correspond to the Euclidean normalizers N = N + (G 1) × N +(G 2) of the components of the direct product. We derived a table including the groups of automorphisms induced by the transformations corresponding to the normalizers under study. Analyzing the general operation of multiplication of three-dimensional rotations in E 4, we refined the distribution of the supersymmetry operators of the three-dimensional sphere of rotations, S 3, for the symmetry groups considered earlier.  相似文献   

11.
The molecular and crystal structures of chiral 1R, 4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-one (I) are determined by X-ray diffraction analysis. Single crystals of I are orthorhombic, a = 8.997(2) Å, b = 11.314(2) Å, c = 14.847(3) Å, V = 1511.3(5) Å3, Z = 4, and space group P212121. The cyclohexanone ring in molecules of compound I has a chair-type conformation with the axial methyl and equatorial isopropyl groups. The enone and benzylidene groupings are nonplanar. The considerable distortion of bond angles at the sp 2 carbon atoms of the benzylidene grouping and the puckering parameters of the cyclohexanone ring in the structure of I are close to those observed for the previously studied compound with the p-methoxy substituent. In the crystal, molecules I are linked by very short intermolecular hydrogen bonds .  相似文献   

12.
The para and ortho isomers of 3,5-dinitro-(4-acetylphenyl)aminobenzoyl (p-bromophenyl)amide (I and II, respectively) are synthesized, and their physicochemical properties and structure are investigated. The para isomer I has a higher melting temperature and is less soluble in organic solvents as compared to the ortho isomer II. The electronic absorption spectra indicate that absorption for molecule I occurs at longer wavelengths than for molecule II. A correlation between the physicochemical properties and the crystal structures of compounds I and II is revealed. Crystals I · 0.5C6H6 are triclinic; the unit cell parameters are a = 11.760(2) Å, b = 13.958(3) Å, c = 15.012(3) Å, α = 108.01(2)°, β = 103.95(1)°, γ = 92.00(2)°, V = 2258.3(8) Å3, space group $P\bar 1$ , and Z = 4. Crystals II are monoclinic; the unit cell parameters are a = 9.302(2) Å, b = 16.380(3) Å, c = 13.480(3) Å, β = 100.09(3)°, V = 2022.1(7) Å3, space group P21/c, and Z = 4. Structures I · 0.5C6H6 and II are characterized by intramolecular and intermolecular hydrogen bonds.  相似文献   

13.
Crystal structure of Fe-rich triclinic astrophyllite K2NaFe7 [Ti2Si8O26F](OH)4 is refined (a Syntex P $\bar 1$ automatic diffractometer, 3809 reflections, 2θ/θ scan, R = 0.041): a = 5.365(2), b = 11.88(1), c = 21.03(2) Å, α = 84.87(6)°, β = 92.25(5)°, γ = 103.01(4)°, sp. gr. A $\bar 1$ , Z = 2, d calcd = 3.29 g/cm3. The refined structure is identical to that reported earlier. The structure is built by three-layer TOT sheets in which an O layer of Fe-octahedra is sandwiched between the T layers consisting of Si-tetrahedra and Ti-octahedra. It is established that differently chosen unit cells of the mineral are interrelated.  相似文献   

14.
The X-ray crystal structure of 2,4′-biflavonoid has been determined. Colorless regular prism shaped crystals of C30H22O4 crystallize in the space group $P\bar 1$ with cell dimensionsa=11.574(1) Å,b=12.235(1) Å,c=17.428(1) Å, α=108.46(3)o, β=80.08(1)o, γ=103.34(2)o,V=2264.7(4) Å3, andZ=4.  相似文献   

15.
Three new mercury(II) complexes containing tertiary phosphine betaine ligands Ph3P+(CH2)2CO2 ? and Ph3P+(CH2)3CO2 ? have been synthesized and fully characterized by single-crystal X-ray analysis: [HgCl2{Ph3(CH2)2CO2}],1, space groupP21/n,a=9.819(2),b=14.966(4),c=14.973(5) Å, β=105.67(2)° andZ=4; [HgI2{Ph3(CH2)2CO2}],2,P21/n,a=10.206(2),b=14.807(3),c=15.557(3) Å, β=107.11(2)° andZ=4; [HgCl(μ-Cl){Ph3P(CH2)3CO2}]2,3, $P\bar 1$ ,a=10.813(2),b=11.975(3),c=11.180(2) Å, α=87.04(2), β=75.14(1), γ=81.95(1)° andZ=1. The isomorphous complexes1 and2 contain discrete mononuclear molecules in which the mercury(II) atom is unsymmetrically chelated by a Ph3P+(CH2)2CO 2 ? ligand and coordinated by a pair of terminal halo ligands in a distorted tetrahedral environment, while3 consists of discrete centrosymmetric dinuclear molecules in which the betaine ligand Ph2P+(CH2)3CO 2 ? acts in the chelate mode and the mercury(II) atoms are unsymmetrically bridged by a pair of chloro ligands.  相似文献   

16.
The X-ray crystal structure of a racemic mixture of D- and L-penicillamine has been determined. Crystals are monoclinic,P21/c (No. 14), with cell dimensionsa=11.624(3),b=5.919(1),c=11.482(2) Å,β=114.48(2)°, andZ=2, based on the racemate. The structure was determined by standard methods and refined toR 1=0.0666,R 2=0.0726 for 985 independent reflections. Bond lengths and bond angles do not differ from those in similar structures. Mass spectra and1H and13C NMR spectra are reported ford-penicillamine, and detailed infrared and Raman spectra are reported for solidd-penicillamine hydrochloride,d 5-d-penicillamine hydrochloride,d-penicillamine,d 4-d-penicillamine, anddl-penicillamine. The Raman spectrum ofd-penicillamine in H2O solution as a function of pH is also reported.  相似文献   

17.
The conditions for equivalent positions on the (hkl) face of growing crystal are derived using symmetry elements of the space group. It is shown by the example of the sp. gr. D 2h 16 that the conditions of equivalent position formation coincide with conditions of the reflection of diffracted beams by crystal. It is established that electron spin resonance (ESR) centers in barite, SO 4 ? (I) and SO 4 ? (II), with only two conjugate spectra with equal intensity out of four, and SO 4 ? (III), with a different intensity of conjugate spectra K ??M = 2, are localized into the growth pyramid of the (001) face with a [010] step. SO 2 ? , SO 3 ? ,, and SO 4 ? (IV) centers, having an identical intensity of the conjugate ESR spectra with K ??M = 2, are localized into the growth pyramid of the (210) face with a growth step [001].  相似文献   

18.
A combinatorial-topological analysis of the La3Ga[6]Ga 4 [4] Ge[4]O14 and La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanates, which have MT and MPT microporous frameworks composed of M octahedra (GeO6, GaO6), T tetrahedra (GeO4, GaO4), and P pyramids (GeO5), is performed using the method of coordination sequences with the TOPOS 3.2 program package. It is established that the La3Ga[6]Ga 4 [4] Ge[4]O14 gallogermanate is characterized by a crystal-forming net 6 6 6 (of the graphite type). A new type of the binodal net 6 10 1 0 + 6 10 (2: 1) is revealed in the La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanate. The cyclic cluster precursors composed of six polyhedra with a lanthanum template atom at the center of the LaMT 5 and LaMP 3 T 3 clusters are identified by the two-color decomposition of the nets in the structures of the La3Ga[6]Ga 4 [4] Ge[4]O14 and La3Ge[6]Ge 2 [5] Ge 2 [4] Ga[4]O16 gallogermanates. The coordination numbers of the cluster precursors in these structures are found to be equal to 6 and 4 for two-dimensional nets and 8 and 6 for three-dimensional nets, respectively.  相似文献   

19.
A dependence of the square of dimensionless magnetic-field (MF) strength on the square of dimensionless wave vector of the domain structure, $h^2 \left( {\tilde q^2 } \right)$ , is analytically derived for the transient hydrodynamic instability arising at splay deformation under a MF. The domain formation is related to the fold catastrophe; the square of the critical field of domain formation, h D 2 , is determined from the condition ${{\partial \left[ {h^2 \left( {\tilde q^2 } \right)} \right]} \mathord{\left/ {\vphantom {{\partial \left[ {h^2 \left( {\tilde q^2 } \right)} \right]} \partial }} \right. \kern-0em} \partial }\left( {\tilde q^2 } \right) = 0$ . In the general case, the function $h^2 \left( {\tilde q^2 } \right)$ is a ratio of two polynomials whose coefficients for calamitics are determined by combinations of four dimensionless viscosities ν21, ν61, ν71, and ν81. Under some assumptions, the quotient of the polynomials at large $\tilde q^2$ is a quadratic function which allows one to experimentally determine the dimensionless viscosities ν21, ν61, ν71, and α21.  相似文献   

20.
The crystal structure of sanidine-like feldspar of the composition KAlSi3O8 from the Khibiny alkaline massif (the Kola Peninsula) has been refined (X-ray diffraction analysis; automated Syntex $P\bar 1$ diffractometer; 2θ: θ scanning technique; 2320 reflections; R (hkl) = 0.0409; anisotropic refinement; AREN program package). The data obtained for KAlSi3O8 are: a = 8.615(9), b = 13.030(7), c = 7.200(5) Å, α = 89.99(5)°, β = 116.01(6)°, γ = 89.98(7)°, Z = 4, sp. gr. $C\bar 1$ . Microtwinning revealed in the crystal structure of the mineral explains the simultaneous existence of two structural-optical types in one sample—“high” and “low” sanidines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号