首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用对聚琥珀酰亚胺(PSI)的亲核加成反应,仿生设计合成侧基带有多巴胺和磺酸甜菜碱两性离子基团的新型聚琥珀酰亚胺衍生物(PSI-DA-ZW);通过聚琥珀酰亚胺衍生物中多巴邻苯二酚基团的氧化自聚和沉积,制备了仿生超亲水功能涂层表面(PSI-DA-ZW/glass).利用X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM...  相似文献   

2.
以正硅酸乙酯(TEOS)、十六烷基三甲基溴化氨(CTAB)、盐酸(HCl)、乙醇和水为原料,通过溶胶-凝胶法提拉涂膜,再经700 ℃快速淬火200 s,制备了二氧化硅(SiO2)纳米粒子涂层。 研究了CTAB浓度、提拉速度、停留时间和提拉涂膜次数对透射率的影响,结果表明,当CTAB质量分数为2.5%,提拉速度为100 mm/min,停留时间为60 s,提拉涂膜1次得到的SiO2纳米粒子涂层透射率最高,可达95.9%。 该涂层具备超亲水性并能耐受6H铅笔刮痕测试。 实验还表明,在SiO2溶胶液中加入CTAB,通过其与TEOS部分水解生成的物种的相互作用,可以改善酸性催化条件下形成的SiO2溶胶的微观结构,从而提高了涂层的透射率和亲水性。  相似文献   

3.
We report a simple and versatile approach to creating a highly transparent superhydrophobic surface with dual-scale roughness on the nanoscale. 3-Aminopropyltrimethoxysilane (APTS)-functionalized silica nanoparticles of two different sizes (100 and 20 nm) were sequentially dip coated onto different substrates, followed by thermal annealing. After hydrophobilization of the nanoparticle film with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane for 30 min or longer, the surface became superhydrophobic with an advancing water contact angle of greater than 160° and a water droplet (10 μL) roll-off angle of less than 5°. The order of nanoparticles dip coated onto the silicon wafer (i.e., 100 nm first and 20 nm second or vice versa) did not seem to have a significant effect on the resulting apparent water contact angle. In contrast, when the substrate was dip coated with monoscale nanoparticles (20, 50, and 100 nm), a highly hydrophobic surface (with an advancing water contact angle of up to 143°) was obtained, and the degree of hydrophobicity was found to be dependent on the particle size and concentration of the dip-coating solution. UV-vis spectra showed nearly 100% transmission in the visible region from the glass coated with dual-scale nanoparticles, similar to the bare one. The coating strategy was versatile, and superhydrophobicity was obtained on various substrates, including Si, glass, epoxy resin, and fabrics. Thermal annealing enhanced the stability of the nanoparticle coating, and superhydrophobicity was maintained against prolonged exposure to UV light under ambient conditions.  相似文献   

4.
Electrospraying/electrospinning of poly(y-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers could be electrospun at the concentration of 22 wt%.The hydrophobieity of the electrosprayed/electrospun PSLG mats was investigated with static water contact angle (WCA) and tilt angle measurements.It was demonstrated that the superhydrophobic surfaces of PSLG with WCAs and tilt angles in the ranges of 150°-170°and16.5°-4.2°,respectively,were obtained through electrospraying/electrospinning process.  相似文献   

5.
Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces.  相似文献   

6.
Transparent carbon nanotube (CNT) coatings were deposited on boro-silicate glass substrates by dip-coating. Ultraviolet-visible (UV) spectra, surface resistance measurement, and the wettability tests were used to investigate the optical transmittance and electrical properties of these CNT coatings. The changes in electrical and optical properties of these coatings were observed to be functions of the number of dip-coating cycles. The surface resistance of the CNT coated substrates decreased dramatically as the number of dip-coatings was increased, whereas the increases in the CNT layer thickness beyond that for the first dipping cycle had little effect on the transparent-properties. Static contact angle measurements proved to be an effective means for evaluating the surface morphology of CNT coatings. The interfacial durability of the CNT coatings on a glass substrate was much better than that of ITO coatings over the temperature range from -150°C to +150°C.  相似文献   

7.
根据膜层设计理论设计出以K9玻璃为基体的耐环境性的双层增透膜, 这种增透膜在特定波长处具有超高的透过率. 以盐酸为催化剂, 分别以正硅酸乙酯和钛酸丁酯为前驱体制备了SiO2和TiO2溶胶, 将SiO2和TiO2溶胶按一定比例混合得到SiO2-TiO2复合溶胶. 通过改变复合溶胶中SiO2的含量调节复合膜的折射率, 通过改变提拉速度控制薄膜的厚度. 实验结果表明, 双层增透膜在550 nm处的透过率达到99.9%. 增透膜经较强机械摩擦后峰值透过率基本保持不变, 表明该增透膜具有优良的耐摩擦性. 进一步采用六甲基二硅氮烷对增透膜表面进行修饰, 修饰后增透膜的接触角增大至98.3°, 增透膜的疏水性及环境稳定性得到较大提高.  相似文献   

8.
采用Stöber方法,通过调节反应温度及乙醇和水的体积,合成了不同粒径的二氧化硅纳米粒子.以合成的粒径为20 nm的二氧化硅纳米粒子为原料,采用简单、方便的喷涂方法在玻璃片上构筑了纳米粒子涂层.在550 ℃煅烧二氧化硅纳米粒子涂层,增强了二氧化硅纳米粒子在玻璃片上的附着力.用1H, 1H, 2H, 2H-全氟辛基三乙氧基硅烷修饰之后,二氧化硅纳米粒子涂层的表面润湿性由亲水性转变为疏水性.通过喷涂法制备的二氧化硅纳米粒子涂层具有减反增透效果,当二氧化硅纳米粒子质量分数为0.48%、循环喷涂沉积数为3时,涂层在可见光范围内的最大透光率可达95.5%.用扫描电子显微镜观测涂层表面形貌发现,喷涂法制备的涂层是均匀的、可控的.喷涂技术构筑纳米粒子涂层具有简单快速、可大面积应用等优点.  相似文献   

9.
The poly(isopropylene oxide) glycerolether (PO) modified silica antireflective (AR) coating films were prepared by sol–gel method. The properties of the silica sols and AR films were characterized by particle size analyzer, transmission electron microscope, UV–Vis spectro-photometry, spectroscopic ellipsometer and contact angle measurement. The results show that PO addition has inconspicuous effect on the transmittance of AR coatings; the maximum transmittance reached 99.5%. Thicknesses of films increase and refractive index decrease with increase of PO concentration. The contact angle with water for the silica films with and without PO was 68.5o and 28.5o, respectively, which indicates an increase of hydrophobicity of the modified coating. When the films were placed in 95% relative humidity at room temperature for 30 days, transmittance loss for the unmodified and modified silica films were 2.5 and 0.6% respectively. Moisture-resistance of the film is greatly improved by PO addition.  相似文献   

10.
This study reports on liquid-repellency of zinc oxide nanostructures (ZnO NS). The ZnO NS are synthesized by an easy and fast chemical bath deposition technique. Three different nanostructured surfaces consisting of nanorods, flowers, and particles are prepared, depending on the deposition time and the presence of ethanolamine in the reaction mixture. Chemical functionalization of the ZnO NS with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) in liquid (PFTS L) and vapor phase (PFTS V) or through octafluorobutane (C(4)F(8)) plasma deposition led to the formation of superomniphobic surfaces. A comprehensive characterization of the wetting properties (static contact angle and contact angle hysteresis) has been performed using liquids composed of deionized water and various concentrations of ethanol (surface tension between 35 and 72.6 mN/m). Depending on the nanostructures morphology, coating nature and liquid employed, high static apparent contact angles θ ≈ 150-160°, and low contact angle hysteresis Δθ ≈ 0° are obtained. The different ZnO NS are characterized using scanning electron microscopy (SEM) and contact angle measurements. The results reported in this work permit preparation of sliding omniphobic surfaces using a simple and low cost technique.  相似文献   

11.
基于简单的液相法,以硫代硫酸钠和氯化铜为原料在铜片表面上构筑了具有微/纳米双尺寸粗糙度的硫化铜膜.用X射线衍射(XRD)仪、扫描电镜(SEM)、能量色散X射线(EDX)光谱仪及光学视频接触角仪对处理前后的铜表面进行了表征和分析.处理后的超亲水铜表面经硬脂酸修饰后具有超疏水效应,静态接触角高达161°,5μL水滴滚动角低至2.5°左右.超疏水性能归因于表面具有双尺寸粗糙度和低表面能的硬脂酸.该方法简单,无需复杂制备过程和苛刻设备,所得超疏水铜表面具有优异的不粘附性、长时间储存的稳定性和一定的耐摩擦性能.  相似文献   

12.
Flexible superhydrophobic polyvinyl alcohol (PVA) films with silver bowl-like array structure are fabricated based on the thermal evaporation with sphere monolayer as templates and the modification of 1H, 1H, 2H, 2H-perfluorodecanethiol on silver surface. The silver microbowl arrays were composed of silver nanoparticles with an average diameter size of ca. 10 nm. The polymer films exhibit excellent stability and remarkable superhydrophobicity with a high water contact angle (CA) of about 163° and a low sliding angle (SA) of less than 3°.  相似文献   

13.
Nanostructured biomaterials have great potential in the field of biomedical engineering. Efforts for treatment of cardiovascular diseases focused on introducing vascular substitutes that are nonthrombogenic and have long‐term patency, but still there is not any perfect replacement for clinical use. In this study, nanostructure tubes of a commonly known biocompatible polymer, polyethylene terephthalate (PET), were prepared via electrospinning process using small diameter mandrel as a collector with two different speeds. The nanofibers (NFs) morphologies' physical and mechanical properties were investigated according to scanning electron microscope (SEM), water contact angle (WCA), porosity measurement, differential scanning calorimetry (DSC), and tensile test. Finer NFs, more percentage of crystallinity, and superior mechanical properties were observed for samples prepared by higher speed mandrel. Since both samples stimulated platelet adhesion and activation, further surface modification with sodium nitrate as nitric oxide (NO) donor was done using two different approaches: dip‐coating and electrospraying. The modified NFs were evaluated via SEM, WCA, tensile test, platelets, and cell adhesion. The results showed more hydrophilicity, reduction in platelet adhesion, and improved blood compatibility for eNO‐HS (electrosprayed NO for higher collector speed) compared with other samples implying the promising potential of this fabrication and modification technique for improving PET‐based cardiovascular substitutes.  相似文献   

14.
Phenol is considered to be a priority pollutant due to its toxicity and carcinogenic effect. Thus, innovative and effective methods have been developed to remove undesired phenol from wastewater. Membrane processes are one of the innovative and effective methods used for the removal of phenol from wastewater. In this study, we investigate the effect of carbon and graphene oxide (GO) coating on phenol removal efficiencies of microfiltration, ultrafiltration, and nanofiltration membranes. Obtained results show the removal efficiencies of all membranes increase with rising pressure. Among all membranes, the carbon-coated nanofiltration membrane (NF90) showed the highest performance with a removal efficiency of 99% under a pressure of 6 bars. The physico-chemical properties of the coated and uncoated membranes were investigated by using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction and contact angle techniques (WCA).  相似文献   

15.
An easy and effective method to prepare superhydrophobic thin film has been developed. The film with optically transparent and low refractive index was composed by one-step coating with modified silica nanoparticles. The silica nanoparticles were prepared by sol–gel process of hydrolysis and condensation of alkoxysilane compounds and then surface modification silica nanoparticles, 50 ± 10 nm, were accomplished using methoxytrimethylsilane (MOTMS). Water contact angle of film increased with the weight of MOTMS of silica sol. When the weight of MOTMS was optimized, the water contact angle and sliding angle of film were 152.8° and less than 10°, respectively. The transmittance of film was also increased as compared to the un-coated microscope glass slide, from 91 to 93.5 %. The refractive index of the film was approximately 1.09 as measured by ellipsometer. The superhydrphobic thin film was also successfully made by using spray coating and the water contact angle of this film was more than 160°. Surface morphology of difference coating methods, dip and spray, were studied. Our result suggests that the film can be applied for superhydrophobicity and optical applications.  相似文献   

16.
Hydrophobins are structural proteins produced by filamentous fungi that are amphiphilic and function through self-assembling into structures such as membranes. They have diverse roles in the growth and development of fungi, for example in adhesion to substrates, for reducing surface tension to allow aerial growth, in forming protective coatings on spores and other structures. Hydrophobin membranes at the air-water interface and on hydrophobic solids are well studied, but understanding how hydrophobins can bind to a polar surface to make it more hydrophobic has remained unresolved. Here we have studied different class II hydrophobins for their ability to bind to polar surfaces that were immersed in buffer solution. We show here that the binding under some conditions results in a significant increase of water contact angle (WCA) on some surfaces. The highest contact angles were obtained on cationic surfaces where the hydrophobin HFBI has an average WCA of 62.6° at pH 9.0, HFBII an average of 69.0° at pH 8.0, and HFBIII had an average WCA of 61.9° at pH 8.0. The binding of the hydrophobins to the positively charged surface was shown to depend on both pH and ionic strength. The results are significant for understanding the mechanism for formation of structures such as the surface of mycelia or fungal spore coatings as well as for possible technical applications.  相似文献   

17.
李新松 《高分子科学》2010,28(4):547-554
<正>The hydrophilicity of silicone hydrogels used as soft corneal contact lens plays an important role in wearing comfort.In order to enhance hydrophilicity and protein resistance,silicone hydrogel membranes were modified by atmospheric pressure glow discharge plasma(APGDP) induced surface graft polymerization of N-vinyl pyrrolidone(NVP) and poly(oligoethylene glycol methyl ether methacrylate)(PEGMA) in this paper.XPS analysis demonstrated the success of graft polymerization of NVP and PEGMA onto the surface of silicone hydrogel membranes.The hydrophilicity of silicone hydrogels was characterized by the measurement of water contact angle(WCA).The result showed that NVP grafted silicone hydrogel has the WCA of about 68°and PEGMA grafted silicone hydrogel has the lowest WCA of about 62°,while the pristine silicone hydrogel is hydrophobic with the WCA of about 103°.Protein resistance of silicone hydrogels was investigated by the method of bicinchoninic acid assay using bovine serum albumin(BSA) as a model.It's found that the grafted silicone hydrogel has a significant improvement of protein resistance,and PEGMA grafting is more efficient for the reduction of protein adsorption than NVP grafting.The silicone hydrogel membranes grafted with NVP and PEGMA are good candidates of soft corneal contact lenses.  相似文献   

18.
Three reusable and durable superhydrophobic nanofibrous filters were prepared by dip coating the nanofibrous fabric in the three different dispersed solutions of the newly modified nanoparticles (ZnO‐NSPO, AlOO‐NSPO, and titanium dioxide [TiO2]‐NSPO). The contact angle results proved that the TiO2‐NSPO coated nanofibrous polyacrylonitrile (PAN) filter was hydrophobic with the water contact angle (WCA) of 141° while the ZnO‐NSPO and AlOO‐NSPO coated nanofibrous PAN filters were superhydrophobic with the WCA of 168° and 152°, respectively. The as‐prepared filters can be utilized as an effective martial for oil‐water separation with separation efficiency of over 98%.  相似文献   

19.
ICP刻蚀硅模板用于PDMS规则超疏水表面的制作   总被引:2,自引:0,他引:2  
张润香  张玉龙  林华水 《电化学》2007,13(3):264-268
在ICP(inductively coupled plasma)刻蚀后的硅模板上复制聚二甲基硅氧烷(PDMS),经剥离得到含有一定尺寸的规则微柱阵列疏水表面.实验表明,当微柱高度较小时,微柱高度和边长对接触角有正影响,而间距则呈负影响;但如微柱高度较大,则高度对接触角的影响趋小,而边长呈负影响.间距对接触角的影响表现复杂.微柱间距6μm,边长14μm和高14μm微柱阵列的PDMS表面,静态接触角最大,约151°.  相似文献   

20.
铝合金表面超疏水涂层的制备及其耐蚀性能   总被引:1,自引:0,他引:1  
基于含氟聚氨酯和纳米SiO2的协同作用, 在铝合金表面成功制备了一层超疏水涂层. 用红外光谱、扫描电镜和电化学测试等技术对超疏水涂层进行了表征和分析. 红外光谱结果表明, 硅烷偶联剂(A1100)成功键合到纳米SiO2表面. 扫描电镜和接触角测定仪对涂层的表面形貌表征结果表明, 涂层表面存在微米鄄亚微米尺度的粗糙结构, 接触角可达到156°, 滚动角小于5°. 电化学测试(交流阻抗和极化曲线)结果表明, 所得到的涂层极大地提高了铝合金的耐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号