首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
All the possible conformations of the three tautomeric isomers of simple β-carbonylamine were fully optimized at ab initio MP2/6-31G** and B3LYP/6-31G** levels in order to determine the conformational equilibrium and the energies of the O—H···N and O···H—N hydrogen bridges. For the most interesting conformations, further calculations in water solution were also carried out. It was found that carbonylamine is the most stable tautomer, followed by enolimine and carbonylimine. This order of stability does not change in solution. O—H···N is the strongest hydrogen bridge, but in solution its energy as well as that of the O···H—N one are dramatically lowered. The deprotonation energy was also calculated and discussed. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 5 June 2000  相似文献   

2.
Efficiencies of excitation—resonance energy transfer in n-hexane from 3(n,π*) and 3(π,π*) states of seven aromatic ketones to cis-1,3-pentadiene (c-P) and 3α,24-dimethoxy-Δ7,9-choladiene (D) were measured. The sterically hindered diene D is approximately 6 times less efficient as an acceptor than is c-P, regardless of the configuration of the sensitizer triplet state. A treatment of the energy transfer efficiencies which assumes no difference between n,π* and π,π* states and which includes only gross aspects of individual sensitizer—acceptor orientations accounts for c-P being no more than 4 times as efficient an acceptor as D. It is concluded that excitation energy migration within the benzoyl sensitizer is sufficiently rapid to make state differences of little importance during excitation—resonance energy transfer.  相似文献   

3.
4.
Described here are the rotationally resolved S(1)-S(0) electronic spectra of the acid-base complex cis-β-naphthol-H(2)O in the gas phase, both in the presence and absence of an applied electric field. The data show that the complex has a trans-linear O-H???O hydrogen bond configuration involving the -OH group of cis-β-naphthol and the oxygen lone pairs of the attached water molecule in both electronic states. The measured permanent electric dipole moments of the complex are 4.00 and 4.66 D in the S(0) and S(1) states, respectively. These reveal a small amount of photoinduced charge transfer between solute and solvent, as supported by density functional theory calculations and an energy decomposition analysis. The water molecule also was found to tunnel through a barrier to internal motion nearly equal in energy to kT at room temperature. The resulting large angular jumps in solvent orientation produce "flickering dipoles" that are recognized as being important to the dynamics of bulk water.  相似文献   

5.
We present a systematic study of 1:1 glycine-water complexes involving all possible glycine conformers. The complex geometries are fully optimized for the first time both in the gas phase and in solution using three DFT methods (B3LYP, PBE1PBE, X3LYP) and the MP2 method. We calculate the G3 energies and use them as the reference data to gauge hydrogen bond strength in the gas phase. The solvent effects are treated via the integral equation formalism-polarizable continuum model (IEF-PCM). Altogether, we loca...  相似文献   

6.
Ultrafast excited state dynamics of spirilloxanthin in solution and bound to the light-harvesting core antenna complexes from Rhodospirillum rubrum S1 were investigated by means of femtosecond pump-probe spectroscopic measurements. The previously proposed S? state of spirilloxanthin was clearly observed both in solution and bound to the light-harvesting core antenna complexes, while the lowest triplet excited state appeared only with spirilloxanthin bound to the protein complexes. Ultrafast formation of triplet spirilloxanthin bound to the protein complexes was observed upon excitation of either spirilloxanthin or bacteriochlorophyll-a. The anomalous reaction of the ultrafast triplet formation is discussed in terms of ultrafast energy transfer between spirilloxanthin and bacteriochlorophyll-a.  相似文献   

7.
Fast intersystem crossing is observed in the S(1)(1)nπ* state of N-heterocyclic aromatic hydrocarbons and carbonyl compounds. It is attributed to spin-orbit coupling with the (3)ππ* state in the same energy region. The strong singlet-triplet mixing was confirmed by large Zeeman splitting of rotational lines in a high-resolution spectrum. For the S(1)(1)ππ* state of aromatic hydrocarbons, the observed Zeeman splitting was found to be considerably small, and intersystem crossing was considered to be minor. These facts are in accordance with El-Sayed's rule, which states spin-orbit coupling is forbidden between the (1)ππ* and (3)ππ* states. The Zeeman splitting of several derivatives was also observed and the substitution effect on the intersystem crossing rate is discussed.  相似文献   

8.
HF, B3LYP, and MP2 methods with the standard basis set, 6-311++G(d,p), were employed to study various aspects of dinitrosomethane (DNM). These results are compared with the outcomes of G2, G2MP2, G3, and CBS-QB3 methods. In the present study, we first characterized the equilibrium conformations, especially global minima. In general, the nitroso-oxime (NO) tautomers of DNM are stabler than the dioxime and dinitroso ones. Furthermore, it was found that the stablest form of NO tautomer is global minima among the known local minima. Surprisingly, the chelated form of NO tautomer, with O–H···O intramolecular hydrogen bond (IMHB), is less stable than the global minimum. In spite of this instability, we comprehensively studied various aspects of IMHB to evaluate the effect of heteroatom’s (N). The results of open–close and related rotamer models predict that the heteroatoms weaken the hydrogen bond, whereas, the geometric, topologic, and natural bond orbital parameters emphasize on opposite conclusion. The HOMA of aromaticity aromaticity index clearly predicts that the π-electron delocalization of chelated form of NO tautomer is greater than the malonaldehyde. Finally, the solvent effects on the properties of DNM tautomers have been estimated by continuum (PCM, IPCM, and SCIPCM), discrete, and mixed models. Theoretical results clearly show that the potential energy surface of DNM, especially global minima, is strongly affected by the solvent.  相似文献   

9.
Lu J  Dai Y  Guo M  Wei W  Ma Y  Han S  Huang B 《Chemphyschem》2012,13(1):147-154
As an excellent bandgap-engineering material, the Cd(1-x)Zn(x)S solid solution, is found to be an efficient visible light response photocatalyst for water splitting, but few theoretical studies have been performed on it. A better characterization of the composition dependence of the physical and optical properties of this material and a thorough understanding of the bandgap-variation mechanism are necessary to optimize the design of high-efficience photocatalysts. In order to get an insight into these problems, we systematically investigated the crystal structure, the phase stability, and the electronic structures of the Cd(1-x)Zn(x)S solid solution by means of density functional theory calculations. The most energetically favorable arrangement of the Cd, Zn, S atoms and the structural disorder of the solid solution are revealed. The phase diagram of the Cd(1-x)Zn(x)S solid solution is calculated based on regular-solution model and compared with the experimental data. This is the first report on the calculated phase diagram of this solid solution, and can give guidance for the experimental synthesis of this material. Furthermore, the variation of the electronic structures versus x and its mechanism are elaborated in detail, and the experimental bandgap as a function of x is well predicted. Our findings provide important insights into the experimentally observed structural and electronic properties, and can give theoretical guidelines for the further design of the Cd(1-x)Zn(x)S solid solution.  相似文献   

10.
The vertical ionization energies of the low-lying conformers of the α-amino acids found in proteins have been calculated. Geometry optimizations were first performed at the B3LYP/6-311G(d,p) level of theory, and then reoptimized at the MP2/6-311G(d,p) level of theory. Vertical ionization energies were then computed by three methods, electron propagator in the partial third-order (P3) approximation, Outer-Valence-Green's Functions, and by evaluating the difference in the total energy between the cation radical and the neutral amino acid in the geometry of the neutral species. When available, the results are compared to the experimental vertical ionization energies. The vertical ionization energies calculated using the MP2/P3 method gave the best overall agreement with the experimental results. Next, the ionization energies in solution are calculated for the zwitterionic forms of the α-amino acids by using IEFPCM methods. To obtain the vertical ionization energy in solution, it is necessary to use the nonequilibrium polarizable continuum model (NEPCM), the results of which are reported here for the α-amino acids.  相似文献   

11.
The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.  相似文献   

12.
The ground and electronically excited singlet states of tetrahydrocannabinol have been studied theoretically using density functional and time-dependent density functional methods. The vertical excitation energies, the equilibrium geometries as well as the adiabatic excitation energies have been determined. Opening of the six-membered ring between the oxygen and carbon atoms has been considered as photochemical reaction path. This mechanism leads to a typical excited-state intramolecular hydrogen-transfer process and produces low-lying S 0S 1 intersection (possible conical intersection, CI) which provides a channel for effective radiationless deactivation of the electronically excited state.  相似文献   

13.
The binding energy, dissociation energy, ionization potentials, electron affinities, gap and stability of small Al n Pt (n = 1–15) clusters, in comparison with pure aluminum clusters have been systematically investigated by means of density functional calculations at the B3LYP level. The growth patten for Al n Pt clusters is that the Pt atom substituted the surface atom of the Al n + 1 clusters for n < 13. Starting from n = 13, the Pt atom completely falls into the center of the Al-frame. The Pt atom substituted the center atom of the Al n + 1 clusters to form the Pt-encapsulated Aln geometries for n > 13. We also find that the impurity Pt atom causes local structural distortion due to different atomic radii and different bonding characteristics. The clusters with total atom numbers of 2, 7, and 11 exhibit high stability.  相似文献   

14.
A dilemma about whether thionitroxide radical (RSNHO) or S-nitrosothiol (RSNO) is observed in protein S-nitrosylation has arisen recently. To illustrate the effect of chemical environment on these structures, this paper presents quantum mechanical molecular dynamics of thionitroxide, and cis-and trans-S-nitrosothiols in the gas phase, methanol, and water. By using Car-Parrinello molecular dynamics (CPMD), we have observed that there is free rotation about the S-N bond at 300 K in thionitroxide, but no such rotation is observed for S-nitrosothiol. The C-S-N-O torsion angle distribution in thionitroxide is s-ignificantly dependent upon the surrounding environment, leading to either gauche-, cis-, or trans-conformation. In the case of S-nitrosothiol the C-S-N-O plane is twisted slightly by 5°-15° in the cis-isomer, while the periplanar structure is well-retained in the trans-isomer. The calculated results are in agreement with the X-ray crystallographic data of small molecular RSNO species. Interestingly, for both compounds, the CPMD simulations show that solvation can cause a decrease in the S-N bond length. Moreover, the oxygen atom of thionitroxide is found to be a good hydrogen-bond acceptor, forming an oxyanion-hole-like hydrogen bonding network.  相似文献   

15.
A comprehensive basicity study of alpha,omega-alkanediamines and related bases has been carried out. Basicities in acetonitrile (AN, pK(a) values), tetrahydrofuran (THF, pK(alpha) values), and gas phase (GP, GB values), were measured for 16, 14, and 9 diamine bases and for several related monoamines. In addition the gas-phase basicities and equilibrium geometries were computed for 19 diamino bases and several related monoamines at the DFT B3LYP 6-311+G** level. The effects of the different factors (intrinsic basicity of the amino groups, formation of intramolecular hydrogen bonds, and molecular strain) determining the diamine basicities were estimated by using the method of isodesmic reactions. The results are discussed in terms of molecular structure and solvation effects. The GP basicity is determined by the molecular size and polarizability, the extent of alkylation, and the energy effect of intramolecular hydrogen bond formation in the protonated base. The basicity trends in the solvents differ very much from those in GP: 1) The solvents severely compress the basicity range of the bases studied (3.5 times for the 1,3-propanediamine family in AN, and 7 times in THF), and 2) while stepwise alkylation of the basicity center leads to a steady basicity increase in the gas phase, the picture is complex in the solvents. Significant differences are also evident between THF and AN. The high hydrogen bond acceptor strength of THF leads to this solvent favoring the bases with "naked" protonation centers. In particular, the basicity order of N-methylated 1,3-propanediamines is practically inverse to that in the gas phase. The picture in AN is intermediate between that of GP and THF.  相似文献   

16.
We report resonance-enhanced two-photon ionization photo-electron spectroscopy of jet-cooled benzene via the 6(1)1(n) (n = 0-3) vibronic levels in S(1)((1)B(2u) π,π*) using a nanosecond UV laser and photoelectron imaging. The best energy resolution (ΔE/E) was 0.7%. The photoelectron spectrum from the S(1) 6(1)1(3) level (E(vib) = 3284 cm(-1)) in the channel three region exhibited a clear signature of intramolecular vibrational redistribution (IVR). The spectral features were consistent with picosecond zero kinetic energy photoelectron (ZEKE) spectra reported by Smith et al. [ J. Phys. Chem. 1995, 99, 1768]. The photoelectron angular anisotropy parameter β(2) was found to be negative in ionization from the 6(1)1(n) (n = 0-3) levels with photoelectron kinetic energies up to 5000 cm(-1). No influence of a shape resonance was identified.  相似文献   

17.
Na2[Fe(CN)5NO].2H2O (SNP) and Ba[Fe(CN)5NO].3H2O (BNP) irradiated at low temperature with light in the green—blue region exhibit two new sets of infrared (IR) bands. These can be assigned to two, long-lived, electronically excited metastable states of the [Fe(CN)5NO]2− (NP) ion. Upon heating, these states depopulate following decay processes with different onset temperatures. We considerably extend here previous polarized IR data on irradiated SNP (100) plates to include the other basal planes. All IR-active CN, NO and FeN stretching modes and FENO bending modes of NP in both metastable states exhibit frequency down shifts This points to a softening of the corresponding bonds upon excitation. Relative frequency shift values observed for modes associated with the FeNO group are about one order of magnitude larger than the corresponding values for CN stretching modes. This supports the conclusion that the metastable states are reached through an electronic transition involving mainly the metal(nd)-NO bonding. We employ dichroic measurements in SNP to estimate the orientation in the lattice of the transition dipole moment vector corresponding to the NO mode of NP in both metastable states. Results show that the FeNO group is not appreciably bent upon excitation of NP to either of these states.  相似文献   

18.
Structural Chemistry - Thermodynamic quantities such as proton affinity (PA) and molecular basicity (GB) for (CaO)n nanoclusters with n?=?2–16 have been calculated using three...  相似文献   

19.
B3LYP/6-311G level of theory is used to study the interactions between aza-, diaza-, and triaza- 12-crown-4 ligands as host molecules and Na+ ion as a guest species. Minimum energy structures, complexes binding energies, basis set superposition errors, and various thermodynamic parameters of free ligands, ion, and complexes have been calculated based on the proposed level of theory. A simple thermodynamic cycle with and without different acetonitrile cluster sizes inside the cavity of Na+, has been used to calculate the stability constants of aza-12-crown-4 complex. All solvation free energy estimations have been done with using SMD model. Results show that with introducing more acetonitrile molecules in the cavity of guest species, the absolute deviation is reduced. In addition, a good linear correlation between experimental complex formation constants and binding energies of complexes has been obtained. Calculated results, which are in agreement with the experimental data, predict that the interaction energy of triaza- is more than diaza-12-crown-4, which in turn is greater than aza-12-crown-4 with Na+ ion.  相似文献   

20.
Structural Chemistry - DFT calculations have been carried out over the IrnV (n = 2–10) clusters in order to predict their stability, electronic, and catalytic properties. Based on the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号