首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap   总被引:6,自引:0,他引:6  
The kinetics of opening of the DNA quadruplex formed by the human telomeric repeat have been investigated using real-time fluorescence resonance energy transfer (FRET) measurements with a peptide nucleic acid (PNA) trap. It has been found that this opening is zero-order with respect to PNA, indicating that the initial step is a rate-limiting internal rearrangement of the quadruplex. A study of the temperature dependence of the rate of quadruplex opening was performed and the activation energy of the process estimated to be 98 +/- 8 kJ mol(-1).  相似文献   

2.
Electrospray mass spectrometry (ESI-MS) was used to monitor the kinetics of duplex formation between the human telomeric DNA quadruplex and its complementary strand; the complexation of telomestatin to the G-quadruplex delays the unwinding of the quadruplex structure and formation of the duplex.  相似文献   

3.
Two new mono-substituted phenanthroline ligands and their platinum(II) square planar complexes have been prepared; one of the complexes has been shown to induce a high degree of quadruplex DNA stabilisation and to inhibit telomerase.  相似文献   

4.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

5.
Putative DNA quadruplex formation within the human c-kit oncogene   总被引:16,自引:0,他引:16  
The DNA sequence, d(AGGGAGGGCGCTGGGAGGAGGG), occurs within the promoter region of the c-kit oncogene. We show here, using a combination of NMR, circular dichroism, and melting temperature measurements, that this sequence forms a four-stranded quadruplex structure under physiological conditions. Variations in the sequences that intervene between the guanine tracts have been examined, and surprisingly, none of these modified sequences forms a quadruplex arrangement under these conditions. This suggests that the occurrence of quadruplex-forming sequences within the human and other genomes is less than was hitherto expected. The c-kit quadruplex may be a new target for therapeutic intervention in cancers where there is elevated expression of the c-kit gene.  相似文献   

6.
G-quadruplex structures formed by DNA at the human telomeres are attractive anticancer targets. Human telomeric sequences can adopt a diverse range of intramolecular G-quadruplex conformations: a parallel-stranded conformation was observed in the crystalline state, while at least four other forms were seen in K(+) solution, raising the question of which conformation is favored in crowded cellular environment. Here, we report the first NMR structure of a human telomeric G-quadruplex in crowded solution. We show that four different G-quadruplex conformations are converted to a propeller-type parallel-stranded G-quadruplex in K(+)-containing crowded solution due to water depletion. This study also reveals the formation of a new higher-order G-quadruplex structure under molecular crowding conditions. Our molecular dynamics simulations of solvent distribution provide insights at molecular level on the formation of parallel-stranded G-quadruplex in environment depleted of water. These results regarding human telomeric DNA can be extended to oncogenic promoters and other genomic G-rich sequences.  相似文献   

7.
The substitution of 2-aminopurine (Ap) for A7 in the human telomeric sequence d[AGGG(TTAGGG)(3)] resulted in a significant increase in the fluorescence intensity of Ap for the conformational change from duplex to quadruplex.  相似文献   

8.
We examined the stability and kinetics of folding of the Oxytricha telomeric repeat sequence (G4T4)4. Fluorescence melting experiments show that this intramolecular quadruplex, which is more stable in potassium- than sodium-containing buffers, shows considerable hysteresis between the melting and annealing profiles, even when heated at a rate of 0.05 degrees C min(-1). Quantitative analysis of this hysteresis, together with temperature-jump relaxation experiments show that the dissociation is exceptionally slow with a half-life of about 10 years at 37 degrees C in the presence of 50 mM K+. The association reaction has a half-life of a few seconds at 37 degrees C, but becomes slower at elevated temperatures consistent with the suggestion that association occurs by a nucleation-zipper mechanism.  相似文献   

9.
核酸中富含短的G-碱基重复的序列可以形成一种复杂的高级结构,称为G-四链体(G-quadruplex).在基因组中,借助生物信息学发现这类富G序列广泛分布在基因的启动子区,特别是那些参与到复制中去的基因,例如癌基因.同时发现这类序列在mRNA的5′非翻译区(5′UTR)也广泛存在.这类序列在染色体末段端粒部位的存在及功能已得到充分阐明.已知端粒富含G-碱基序列,其3′末端以单链状态存在,这使得在一些小分子的选择性作用下端粒序列很容易形成G-四链体结构,进而破坏端粒结构,影响端粒酶活性.已知端粒酶在超过85%的肿瘤中过量表达,因此,端粒酶已经成为抗癌药物设计的特殊靶点,是目前本领域的研究热点之一.已发现系列配体通过有效抑制端粒酶而表现高的抗肿瘤活性.本文主要综述了近年来端粒G-四链体分子识别及其药物靶向的最新进展,并对其作用机理做了进一步的分析和探讨.  相似文献   

10.
The structure of the intermolecular DNA quadruplex d(TTAGGGT)4, based on the human telomeric DNA sequence d(TTAGGG), has been determined in solution by NMR and restrained molecular dynamics simultations. The core GGG region forms a highly stable quadruplex with G-tetrads likely stabilised by K+ ions bound between tetrad plains. However, we have focused on the conformation of the adenines which differ considerably in base alignment, stability and dynamics from those in previously reported structures of d(AGGGT)4 and d(TAGGGT)4. We show unambiguously that the adenines of d(TTAGGGT)4 are involved in the formation of a relatively stable A-tetrad with well-defined glycosidic torsion angles (anti), hydrogen bonding network (adenine 6-NH2-adenine N1) defined by interbase NOEs, and base stacking interactions with the neighbouring G-tetrad. All of these structural features are apparent from NOE data involving both exchangeable and non-exchangeable protons. Thus, context-dependent effects appear to play some role in dictating preferred conformation, stability and dynamics. The structure of d(TTAGGGT)4 provides us with a model system for exploiting in the design of novel telomerase inhibitors that bind to and stabilise G-quadruplex structures.  相似文献   

11.
Human telomeric G-quadruplexes have raised broad interest not just due to their involvement in the regulation of gene expressions and telomerase activities but also because of their application in nanoarchitectures. Herein, three azobenzene derivatives 1-3 were synthesized with different substituent groups and their photo-isomerization properties were investigated by UV/Vis spectroscopy. Then circular dichroism spectroscopy (CD), fluorescence experiments and native-gel electrophoresis were performed to evaluate their capabilities of conformational photo-regulation both in the absence and presence of metal ions. The results suggested that the compounds synthesized can successfully regulate the conformation of human telomeric G-quadruplex DNA in K(+) conditions to some extent. This work will initiate the possibility for the design and intriguing application of light-induced switching to photoregulate the conformation of G-quadruplex DNA under physiological conditions, providing a possible pathway to control G-quadruplex conformation in biological applications and also expanding the potential use of G-quadruplexes in nanomachines.  相似文献   

12.
Intramolecular folding in three tandem guanine repeats of human telomeric DNA has been investigated using optical-tweezers, MD simulation and circular dichroism. A mechanically and thermodynamically stable species in this sequence shows a structure consistent with a triplex conformation. A similar species has also been observed to coexist with a G-quadruplex in a DNA sequence with four tandem guanine repeats.  相似文献   

13.
Recent theoretical studies performed on the folding/unfolding mechanism of the model telomeric human DNA, 5'-AGGGTTAGGGTTAGGGTTAGGG-3' (Tel22), have indicated that in the presence of K(+) ions Tel22 folds into two hybrid G-quadruplex structures characterized by one double and two reversal TTA loops arranged in a different way. They predicted a new unfolding pathway from the initial mixture of hybrid G-quadruplexes via the corresponding intermediate triplex structures into the final, fully unfolded state. Significantly, no experimental evidence supporting the suggested pathway has been reported. In the current work, we performed a comprehensive global thermodynamic analysis of calorimetric (DSC, ITC) and spectroscopic (CD) data obtained on monitoring the folding/unfolding of Tel22 induced by changes of temperature and K(+) concentration. We show that unfolding of Tel22 may be described as a monomolecular equilibrium three-state process that involves thermodynamically distinguishable folded (F), intermediate (I), and unfolded (U) state. Considering that calorimetric methods cannot distinguish between energetically similar G-quadruplex or triplex conformations predicted by the theoretical model one can conclude that our results represent the first experimental support of the suggested unfolding/folding mechanism of Tel22. This conclusion is confirmed by the fact that the estimated number of K(+) ions released upon each unfolding step in our thermodynamic model agrees well with the corresponding values predicted by the theoretical model and that the observed changes in enthalpy, entropy, and heat capacity accompanying the F → I and I → U transitions can be reasonably explained only if the intermediate state I is considered to be a triplex structural conformation.  相似文献   

14.
2-Aminopurine (Ap) modified human telomere sequences were used to monitor the specific complex formation of the G-quadruplex and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4).  相似文献   

15.
G-quadruplexes are formed by association of DNA strands containing multiple contiguous guanines. The capability of drugs to induce formation or stabilize G-quadruplexes is an active area of cancer therapy investigation. We evaluated interaction between two cationic tetrapyridinoporphyrazines with Na+ and K+ forms of human telomeric G-quadruplex DNA by chemometrics method. An antiparallel quadruplex structure was found to be stabilized more greatly by these two isomers in the presence of K+ and Na+ ions. Equilibrium model of a ligand binding with DNA oligomer has been considered as a process of small molecule adsorption on to a lattice of multiple binding sites. In multivariate analysis methods, it is accounted this assertion that during saturation of the macromolecule by a ligand should expect effect of cooperativity due to changes in DNA conformation or the mutual influence between bound ligands. Such phenomenon cannot be entirely described by the classical stepwise complex formation model. From the results of absorption and circular dichroism measurements, the unique site for the ligand binding is suggested to be the intercalating in guanine tetrad plane quadruplex. We found a 2:1 binding stoichiometry for both ligands and Tel22.  相似文献   

16.
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.  相似文献   

17.
Functional and dysfunctional roles of quadruplex DNA in cells   总被引:13,自引:0,他引:13  
  相似文献   

18.
A human telomeric G-quadruplex (G4DNA) metalloenzyme, assembled with G4DNA and Cu(2+) ions, can catalyze the enantioselective Friedel-Crafts (F-C) reaction in water with good enantioselectivity (up to 75% ee). Furthermore, we found that the absolute configuration and the enantioselectivity of the product largely depend on the conformation and the sequence of G4DNA.  相似文献   

19.
  相似文献   

20.
UV absorption spectroscopy is one of the most widely used methods to monitor nucleic acid folding in solution, but the absorption readout is the weighted average contribution of all species present in solution. Mass spectrometry, on the other hand, is able to separate constituents of the solution based on their mass, but methods to probe the structure of each constituent are needed. Here, we explored whether gas-phase UV spectroscopy can give an indication of DNA folding in ions isolated by electrospray mass spectrometry. Model DNA single strands, duplexes, and G-quadruplexes were extracted from solution by electrospray; the anions were stored in a quadrupole ion trap and irradiated by a tunable laser to obtain the UV action spectra of each complex. We found that the duplex and quadruplex spectra are significantly different from the spectra of single strands, thereby suggesting that electronic spectroscopy can be used to probe the DNA gas-phase structure and obtain information about the intrinsic properties of high-order DNA structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号