首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, facile, and robust strategy was proposed to increase the pore size and mechanical strength of cryogels. By mixing the monomers of acrylamide and 2‐hydroxyethyl methacrylate as the precursor, a monolithic copolymer cryogel with large interconnected pores and thick pore walls was prepared. Hydrogen bonding between the two monomers contributed to the entanglement and aggregation of the copolymers, thickening the pore walls and resulting in larger pore sizes. Analysis via mercury porosimetry demonstrated that the interconnected pore diameter of the copolymer cryogel ranged from 10‐350 µm, which was far larger than that of the cryogels from one monomer (10‐50 µm). Additionally, the thicker pore walls of the copolymer cryogel improved its mechanical strength. Affinity cryogels were prepared through covalent immobilization using Tris(hydroxymethyl)aminomethane as a coupling agent, and the affinity binding of lysozymes on Tris‐cryogel was evaluated by the Langmuir isothermal adsorption with the maximum adsorption capacity of 360 mg/g. Compared with that of the Tris‐cryogels produced from one monomer, the copolymer Tris‐cryogel exhibited higher adsorption capacity and lysozyme purity, when the chicken egg white solution flowed solely driven by gravity. This work provides a new avenue for designing and developing supermacroporous cryogels for bioseparation.  相似文献   

2.
Molecular imprinting is a method for making selective binding sites in synthetic polymers using a molecular template. The aim of this study is to prepare lysozyme-imprinted supermacroporous cryogels which can be used for the purification of lysozyme (Lyz) from egg white. N-Methacryloyl-(L)-histidinemethylester (MAH) was chosen as the metal-coordinating monomer. In the first step, Cu2+ was complexed with MAH and the lysozyme-imprinted poly(HEMA-MAH) [Lyz-MIP] cryogel were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) in an ice bath. After that, the template (i.e., lysozyme) was removed using 0.05 M phosphate buffer containing 1M NaCl (pH 8.0). The maximum lysozyme adsorption capacity was 22.9 mg/g polymer. The relative selectivity coefficients of Lyz-MIP cryogel for lysozyme/bovine serum albumin and lysozyme/cytochrome c were 4.6 and 3.2 times greater than non-imprinted poly(HEMA-MAH) (NIP) cryogel, respectively. Purification of lysozyme from egg white was also monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 94% with recovery about 86%. The Lyz-MIP cryogel could be used many times without decreasing the adsorption capacity significantly.  相似文献   

3.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Complex macroporous poly(vinyl alcohol) (PVA) cryogels have been obtained by cryogenic treatment (freezing at–20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of PVA–chitosan hydrochloride mixed solutions. The subsequent alkaline treatment of the cryogels has resulted in the transformation of the water-soluble salt form of chitosan into its insoluble basic form, which coagulates inside the bulk of the continuous phase of PVA cryogel into small particles with sizes of 2–5 µm. In the resulting composite cryogels, these particles play the role of an “active” filler, which increases the rigidity and heat endurance of the gel material. It has been shown that the sorption capacity of such chitosan particles entrapped into the bulk of composite cryogels with respect of bivalent copper ions is noticeably higher than the sorption capacity of ground chitosan particles incorporated as a discrete filler into the continuous phase PVA cryogels. The study of the properties of PVA–chitosan hydrochloride mixed solutions revealed that these polymers are, to a large extent, compatible with one another in a common solvent at a low ionic strength. Therefore, liquidliquid phase separation of these systems due to the thermodynamic incompatibility of macromolecules of different natures is observed only upon increasing the ionic strength by adding a low-molecular-mass salt (NaCl, 0.15 mol/L) to the solution.  相似文献   

5.
The use of highly purified immunoglobulin became among the most powerful adopted strategies in therapeutic trials nowadays. Their role as immunomodulatory and anti-inflammatory agents has widened their scope of use. A novel continuous supermacroporous monolithic cryogels embedded with histidine-epoxy-activated-sepharose beads were synthetized as a new monolithic adsorbents for the separation of immunoglobulin G from human serum. The histidine-epoxy-activated-sepharose beads were embedded into the 2-hydroxyethyl methacrylate (HEMA) cryogels present in frozen aqueous solution inside a plastic syringe. The microstructure morphology of the cryogels was characterized by swelling measurement and scanning electron microscopy. The adsorption of human IgG on the histidine-epoxy-activated-sepharose beads pHEMA cryogels appeared to follow the Langmuir–Freundlich adsorption isotherm model. The maximum IgG adsorption was observed at 4°C and pH 7.4 and was found to be 26.95 mg/g of cryogel which is close to that obtained experimentally (24.49 mg/g). The cryogels were used for several adsorption-desorption cycles without any negligible decrease in their adsorption capacity.  相似文献   

6.
The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity.  相似文献   

7.
A supermacroporous monolithic cryogel was directly prepared by in situ cryo-copolymerization in a stainless steel cartridge (70mmx5.0mm I.D.) using methacrylic acid (MAA) as functional monomer and polyethylene glycol diacrylate (PEGDA) as crosslinker. The highly crosslinked (90%, molar ratio) poly(MAA-PEGDA) cryogel had more uniform supermacropores with a mean diameter of 25microm compared to the poly(acrylamide)-based cryogels. The viability of poly(MAA-PEGDA) cryogel as a medium was demonstrated for separations of lysozyme from chicken egg white (CEW) and water-soluble poly(N-isopropylacrylamide-co-3-(dimethylamino) propyl methacrylamide) (NIPAM-DMAPMA) nanoparticles from its crude reaction solution. The dynamic binding capacities of lysozyme and the polymeric nanoparticles were 4.51x10(-3)micromol/ml and 33.4microg/ml, respectively. The lysozyme recovered from the above separations had a purity of more than 85%, and retained 90% of its enzymatic activity.  相似文献   

8.
Graft polymerization of monomer chains with expected functional groups onto the matrix pore surfaces by initiator is an effective approach for introducing ion-exchange groups to cryogel matrix to get anion- or cation-exchange supermacroporous cryogels. In this work, a novel cation-exchange cryogel with sulfo binding groups was prepared by grafting of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) onto polyacrylamide-based cryogels in glass columns. The grafting polymerization was achieved in an in-situ manner which was performed by pumping the initiator and the reactive solution of graft monomer with sulfo binding groups directly through a cryogel bed pre-produced in a glass column under frozen condition. The axial liquid dispersion characteristics within the monolithic cryogel beds before and after the in-situ polymerization were compared by measuring residence time distributions (RTDs) at various liquid flow rates using tracer pulse-response method. Microstructure morphology of pores within cryogels was analyzed by scanning electron microscopy (SEM). Chromatography of lysozyme was carried out to reveal the protein breakthrough and elution characteristics in the obtained cryogel beds.  相似文献   

9.
Composite cryogels containing porous adsorbent particles were prepared under cryogelation conditions. The composites with immobilized concanavalin A (Con A) were used for capturing glycoproteins. Adsorbent particles were introduced into the structure in order to improve the capacity and to facilitate the handling of the particles. The monolithic composite cryogels were produced from suspensions of polyvinyl alcohol particles and porous adsorbent particles and cross‐linked under acidic conditions at sub‐zero temperature. The cryogels were epoxy activated and Con A was immobilized as an affinity ligand. Binding and elution of horseradish peroxidase (HRP) was studied in batch experiment and in a chromatographic setup. Increasing adsorbent concentration in composite cryogels will increase ligand density, which therefore enhances the amount of bound HRP from 0.98 till 2.9 (milligram enzyme per milliliter of gel) in the chromatographic system. The material was evaluated in 10 cycles for binding and elution of HRP.  相似文献   

10.
Novel dense composite adsorbents for expanded bed adsorption of protein have been fabricated by coating 4% agarose gel onto Nd-Fe-B alloy powder by a water-in-oil emulsification method. Two composite matrices, namely Nd-Fe-B alloy-densified agarose (NFBA) gels with different size distributions and densities, NFBA-S (50-165 microm, 1.88 g/ml) and NFBA-L (140-300 microm, 2.04 g/ml), were produced. Lysozyme was used as a model protein to test the adsorption capacity and kinetics for the NFBA gels modified by Cibacron blue 3GA (CB-NFBA gels). Liquid-phase dispersion behavior in the expanded beds was examined by measurements of residence time distributions, and compared with that of Streamline SP (Amersham-Pharmacia Biotech, Sweden). The dependence of axial mixing in the expanded beds on flow velocity, bed expansion degree. settled bed height, and viscosity of liquid phase was investigated. Breakthrough curves of lysozyme in the expanded beds of the CB-NFBA gels were also examined. The dynamic binding capacity at 5% breakthrough was 23.3 mg/ml matrix for the CB-NFBA-S gels, and 16.7 mg/ml matrix for the CB-NFBA-L, at a flow velocity of 220 cm/h. The results indicate that the NFBA gels are promising for expanded bed adsorption of proteins.  相似文献   

11.
A three‐dimensional reduced graphene oxide aerogel with embedded nickel oxide nanoparticles was prepared by a one‐step self‐assembly reaction in a short time. The nanoparticles could be captured into the interior of reduced graphene oxide network during the formation of the three‐dimensional architecture. The composite exhibited porosity, good biocompatibility, and abundant metal affinity binding sites. The aerogel was used to isolate ovalbumin selectively from egg white, and favorable adsorption was achieved at pH 3. An adsorption efficiency of 90.6% was obtained by using 1 mg of the composite for adsorbing 70 μg/mL of ovalbumin in 1.0 mL of sample solution, and afterwards a recovery of 90.7% was achieved by using an eluent of 1.0 mL Britton–Robinson buffer solution at pH 5. After the adsorption/desorption, ovalbumin showed no change in the conformation. The adsorption behavior of ovalbumin on the reduced graphene oxide composite well fitted to the Langmuir adsorption model, and a corresponding theoretical maximum adsorption capacity was 1695.2 mg/g. A sodium dodecyl sulfate polyacrylamide gel electrophoresis assay demonstrated that the aerogel could selectively isolate ovalbumin from chicken egg white.  相似文献   

12.
A continuous supermacroporous matrix has been developed allowing direct capture of enzyme from non-clarified crude cell homogenate at high flow-rates. The continuous supermacroporous matrix has been produced by radical co-polymerization of acrylamide, allyl glycidyl ether and N,N'-methylene-bis(acrylamide) which proceeds in aqueous solution of monomers frozen inside a column (cryo-polymerization). After thawing, the column contains a continuous matrix having interconnected pores of 10-100 microm size. Iminodiacetic acid covalently coupled to the cryogel is a rendering possibility for immobilized metal affinity chromatographic purification of recombinant His-tagged lactate dehydrogenase, (His)6-LDH, originating from thermophilic bacterium Bacillus stearothermophilus, but expressed in Escherichia coli. The large pore size of the adsorbent makes it possible to process particulate-containing material without blocking the column. No preliminary filtration or centrifugation is needed before application of crude extract on the supermacroporous column. A total of 210 ml crude homogenate, 75 ml of it non-clarified, was processed on a single 5.0 ml supermacroporous column at flow speeds up to 12.5 ml/min without noticeable impairment of the column properties. Mechanically the cryogel adsorbent is very stable. The continuous matrix could easily be removed from the column, dried at 70 degrees C and kept in a dry state. After rehydration and reinsertion of the matrix into an empty column, (His)6-LDH was purified as efficiently as on the newly prepared column. The procedure of manufacturing the supermacroporous continuous cryogel is technically simple. Starting materials and initiators are cheap and available and are simply mixed and frozen under specified conditions. Altogether these qualities reveal that the supermacroporous continuous cryogels is a very interesting alternative to existing methods of protein purification from particulate-containing crude extracts.  相似文献   

13.
Chitosan/MOF composite porous monolith used in water remediation as adsorbent can realize high-efficient removal of pollutant in water and facile recycling from water. However, dissolution of chitosan (without crosslinking) in acidic aqueous solution will cause breakage of composite monolith. Herein, we report a chitosan/UiO-66 monolith prepared by ice-templating method. Specially, a pre-crosslinking treatment (by glutaraldehyde) is employed before the monolith formation, which obviously boosts its stability in aqueous solution. The composite monolith is evaluated by SEM, N2 adsorption, XRD, and batch adsorption tests for Congo Red (CR). The results show that the composite monolith possesses a typical ice-templating structure with hierarchical (mirco- / meso- and macro-) pores. UiO-66 particles are embedded on the surface of chitosan matrix, and the crystal structure of UiO-66 is not changed obviously by the crosslinking and freezing process. The composite monolith exhibits high adsorption efficiency (90% of CR was removed from its aqueous solution in 60 min) and the maximum adsorption capacity of 246.21 mg/g (derived from Langmuir model) can be reached. After adsorption, the monolith is collected by a facile procedure and recovered using ethanol for evaluating its reusability. After 4 cycles, the CR removal efficiency of the composite monolith still remains ~90% of the initial efficiency. This work demonstrates that the simple crosslinking procedure before monolith formation can ensure the intact shape of the chitosan/MOF monolith during adsorption.  相似文献   

14.
The separation and purification of important biomolecule deoxyribonucleic acid (DNA) molecules are extremely important. The adsorption technique among these methods is highly preferred as the adsorbent cryogels are pretty much used due to large pores and the associated flow channels. In this study, the adsorption of DNA via Co(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [poly(HEMA-GMA)] cryogels was performed under varying conditions of pH, interaction time, initial DNA concentration, temperature, and ionic strength. For the characterization of cryogels; swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), surface area (BET), elemental and ICP-OES analysis were performed. L-lysine amino acid was chosen as Co(II)-chelating agent and the adsorption capacity of cryogels was determined as 33.81 mg DNA/g cryogel. Adsorption of pea DNA was studied under the optimum adsorption conditions and DNA adsorption capacity of cryogels was found as 10.14 mg DNA/g cryogel. The adsorption process was examined via Langmuir and Freundlich isotherm models and the Langmuir adsorption model was determined to be more appropriate for the DNA adsorption onto cryogels.  相似文献   

15.
In situ adsorption of human serum albumin (HSA) and ovalbumin (OVA) was real-time monitored by piezoelectric quartz crystal impedance (PQCI) technique to fully understand the initial cellular response on hydroxyapatite/chitosan (HAP/CS) composite. The PQCI parameters, such as resonant frequency (f), static capacitance (Cs), and motional resistance (Rm) were measured for investigating the kinetic adsorption behaviors of both proteins. The change in frequency shifts (Δf) depends on the amount of the adsorbed protein, and the change in motional resistance (ΔRm) results from the microporosity variation of HAP/CS coating. The results show that the amount of the absorbed HSA is much greater than that of OVA on HAP/CS coating because of the unique construction of HSA as well as a flexible protein. Furthermore, Δf and ΔRm data were fitted according to the kinetic exponential decay equations. It can be seen that there is only one adsorption process for OVA, but the absorption process for HSA is followed by a rearrangement process, and the former process is faster than the rearrangement process. Subsequently, the composite binding with proteins were demonstrated by the Fourier transform infrared (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).  相似文献   

16.
The microstructure of complex and composite poly(vinyl alcohol) (PVA) cryogels containing water-soluble chitosan hydrochloride (ChHC) of dispersed particles of water-insoluble chitosan base (Ch), respectively, has been studied by optical microscopy and attenuated total reflection FTIR spectroscopy. The macroporous morphology of cryogels has been studied using preparations in the form of thin (~10 μm) sections and discs 1 mm thick. The introduction of non-gelling additives (NaCl and ChHC) into an initial PVA solution causes significant changes in the size and shapes of macropores in the complex cryogels formed by freezing–defrosting, as compared with the pores in the samples obtained under the same conditions without additives. The reasons for the changes are the process of phase segregation and the influence of low- and high-molecular-weight electrolytes on crystallization of ice, which plays the role of a porogen upon cryotropic gelation of aqueous PVA solutions. As a result of an alkaline treatment of the complex cryogels, which transforms ChHC into Ch, microcoagulation of chitosan yields discrete, almost spherical, particles with sizes of about 1–5 μm. IR spectral studies have shown that concentration gradients of the gelling and nongelling polymers arise along the thickness of the gel discs, with PVA concentration prevailing near the lower surface and ChHC or Ch concentration dominating near the upper surface of the disc.  相似文献   

17.
Cheap and efficient adsorbents to remove contaminants of toxic dye molecules from wastewater are strongly in demand for environmental reasons. This study provides a novel design of a monolithic adsorbent from abundant materials via a facile synthetic procedure, which can greatly reduce the problems of the tedious separation of adsorbents from treated wastes. A hierarchically porous cellulose/activated carbon (cellulose/AC) composite monolith was prepared by thermally-induced phase separation of cellulose acetate in the presence of AC, using a mixture of DMF and 1-hexanol, followed by alkaline hydrolysis. The composite monolith had alarge specific surface area with mesopore distribution. It not only showed high uptake capacity towards methylene blue (MB) or rhodamine B (RhB) but could also simultaneously adsorb MB and RhB from their mixture, in which the adsorption of one dye was not influenced by the other one. Remarkable effects of solution pH, initial concentration of dye (C 0), contact time, adsorbent dosage and temperature on the adsorption of MB and RhB onto the composite monolith were demonstrated. The binding data for MB and RhB adsorption on the composite monolith fitted the Freundlich model well, suggesting a heterogeneous surface of the composite monolith. The monolith could retain around 90% of its adsorption capacity after 8 times reuse. These data demonstrate that the cellulose/AC composite monolith has a large potential as a promising adsorbent of low cost and convenient separation for dye in wastewater.  相似文献   

18.
In this study, concanavalin A (Con A)-attached poly(ethylene glycol dimethacrylate) [poly(EGDMA)] cryogels were used for immobilization of Aspergillus niger inulinase. For this purposes, the monolithic cryogel column was prepared by radical cryocopolymerization of EGDMA as a monomer and N,N′-methylene bisacrylamide as a crosslinker. Then, Con A was attached by covalent binding onto amino-activated poly(EGDMA) cryogel via glutaraldehyde activation. Characterization of cryogels was performed by FTIR, EDX, and SEM studies. Poly(EGDMA) cryogels were highly porous and pore size was found to be approximately 50–100 μm. Con A-attached poly(EGDMA) cryogels was used in the adsorption of inulinase from aqueous solutions. Adsorption of inulinase on the Con A-attached poly(EGDMA) cryogel was performed in continuous system and the effects of pH, inulinase concentration, and flow rate on adsorption were investigated. The maximum amount of inulinase adsorption was calculated to be 27.85 mg/g cryogel at 1.0 mg/mL inulinase concentration and in acetate buffer at pH 4.0. Immobilized inulinase was effectively used in continuous preparation of high-fructose syrup. Inulin was converted to fructose in a continuous system and released fructose concentration was found to be 0.23 mg/mL at the end of 5 min of hydrolysis. High-fructose content of the syrup was demonstrated by thin layer chromatography.  相似文献   

19.
The review is devoted to a specific kind of polymeric gels formed as a result of non-deep freezing of solutions or colloidal sols of the corresponding precursors. These materials are termed as cryogels. They possess a series of unique properties, first of all, the specific character of porosity (macroporous cryogels with the pore cross-section from tenth fractions of μm to ∼10 μm and supermacroporous (gigaporous) cryogels with pores of tens and hundreds of μm) and are attractive from the viewpoint of biotechnological implementation. Approaches to the preparation of the so-called “smart” composites based on the cryogels are considered. The use of various cryogels as carriers of immobilized biocatalysts (enzymes, cells), matrices for wide-porous affinity sorbents and immunosorbents, and spongy scaffolds for 3D culturing of animal cells is discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 996–1013, May, 2008.  相似文献   

20.
壳聚糖季铵盐/滤纸复合膜对胆红素的吸附研究   总被引:11,自引:0,他引:11  
用2,3-环氧丙基三甲基氯化铵对壳聚糖进行化学修饰,在壳聚糖的分子结构中引入季胺盐基团,提高其阳离子含量。将壳聚糖季铵盐涂在滤纸上,用戊二醛交联,制得壳聚糖季铵盐/滤纸复合膜,考察该复合膜的强度以及对胆红素的吸附性能。实验结果表明,壳聚糖季铵盐/滤纸复合膜具有良好的力学性能;对胆红素的吸附在3h基本达到平衡,其吸附量远大于壳聚糖/滤纸复合膜;适当取代度及高交联度的复合膜吸附效果较好。复合膜对胆红素的吸附量随离子强度的增加而降低;血清白蛋白的加入使吸附量下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号