首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

2.
At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

3.
The stability of amine-functionalized silica sorbents prepared through the incipient wetness technique with primary, secondary, and tertiary amino organosilanes was investigated. The prepared sorbents were exposed to different gaseous streams including CO2/N2, dry CO2/air with varying concentration, and humid CO2/air mixtures to demonstrate the effect of the gas conditions on the CO2 adsorption capacity and the stability of the different amine structures. The primary and secondary amine-functionalized adsorbents exhibited CO2 sorption capacity, while tertiary amine adsorbent hardly adsorbed any CO2. The secondary amine adsorbent showed better stability than the primary amine sorbent in all the gas conditions, especially dry conditions. Deactivation species were evaluated using FT-IR spectra, and the presence of urea was confirmed to be the main deactivation product of the primary amine adsorbent under dry condition. Furthermore, it was found that the CO2 concentration can affect the CO2 sorption capacity as well as the extent of degradation of sorbents.  相似文献   

4.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

5.
Adsorption of CO2, N2, CH4 and H2 on triamine-grafted pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41) was investigated at room temperature in a wide range of pressure (up to 25 bar) using gravimetric measurements. The material was found to exhibit high affinity toward CO2 in comparison to the other species over the whole range of pressure. Column-breakthrough dynamic measurements of CO2-containing mixtures showed very high selectivity toward CO2 over N2, CH4 and H2 at CO2 concentrations within the range of 5 to 50%. These conditions are suitable for effective removal of CO2 at room temperature from syngas, flue gas and biogas using temperature swing (TS) or temperature-pressure swing (TPS) regeneration mode. Moreover, TRI-PE-MCM-41 was found to be highly stable over hundreds of adsorption-desorption cycles using TPS as regeneration mode.  相似文献   

6.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

7.
8.
The influence of hydrogen-containing molybdenum and tungsten bronzes on the catalytic activity of palladium composite catalysts for the oxidation of H2, CO, and CH4 was studied. It was found that the composite catalysts containing H x MO3 phases (M = W or Mo), which were formed by the reduction of MoO3 and WO3 oxides with hydrogen in the presence of deposited Pd, showed higher catalytic activity in the oxidation of small molecules (H2, CO, and CH4) with excess oxygen than the traditional Pd/Al2O3 deposited catalyst with the same content of the deposited metal. It was shown that the thermal stability of the H x MO3 phases was the limiting factor influencing the activity of these composite catalysts.  相似文献   

9.
The properties of supported bimetallic Rh-Co/ZrO2 catalysts in ethanol steam reforming into hydrogen-containing gas were studied. The particles of Rh-Co solid solutions on the catalyst surface were prepared by the thermal decomposition of the double complex salt [Co(NH3)6][Rh(NO2)6] and the solid solution Na3[RhCo(NO2)6]. It was found that the bimetallic Rh-Co/ZrO2 catalysts exhibited high activity in the reaction of ethanol steam reforming. The equilibrium composition of reaction products was attained at 500–700°C and a reaction mixture space velocity of 10000 h−1.  相似文献   

10.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

11.
12.
As a base-promoted Kolbe–Schmitt carboxylation reaction, the mechanism of synthesis of salicylic acid derivatives from phenols with CO2 in the industry is still unclear, even up to now. In this paper, synthesis of 3,6-dichloro salicylic acid (3,6-DCSA) from 2,5-dichloro phenoxide and CO2 was investigated in the presence of K2CO3. We show the reaction can proceed by itself, but it goes at a slower rate as well as a lower yield, compared to the case with the addition of K2CO3. However, the yield of 3,6-DCSA is only minorly affected by the size of K2CO3, which cannot be explained from the view of catalytic effect. Therefore, K2CO3 may on one hand act as a catalyst for the activation of CO2 so that the reaction can be accelerated, while on the other hand, it also acts as a co-reactant in deprotonating the phenol formed by the side reaction to phenoxide, which is further converted to salicylate.  相似文献   

13.
The catalysts based on MoO3/Al2O3 were synthesized and tested using aqueous hydrogen peroxide as the oxidant in the oxidative desulfurization of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) into the corresponding sulfones. Among catalysts tested, 15%(MoO3–WO3)/Al2O3 prepared by a conventional impregnation method was considerably active for the oxidation of thiophene, BT and DBT, which could achieve higher than 99.2% conversions at lower reaction temperature (≤338 K). The use of hexadecyltrimethyl ammonium bromide as the phase-transfer reagent in small amounts could promote the reaction efficiently.  相似文献   

14.
The synthesis of COS from CO, CO2 and liquid sulfur in the presence and absence of hydrogen was explored. The reaction of H2 with liquid sulfur produced H2S and polysulfanes, which increase the reactivity of liquid sulfur and provide alternative complementary reaction routes for the formation of COS. The reaction from CO2 proceeds by forming CO as intermediate. Elevated pressure favors formation of COS from both carbon oxides due to the increasing residence time and the saturation of gases in the liquid. Above 350 °C, the solubility of H2S in sulfur and the hydrogenation of COS limit the conversion of CO. The approach provides a highly efficient method for the preparation of COS under mild reaction conditions, without using a catalyst or water adsorbents.  相似文献   

15.
Coordination polymers [AgCF3CO2(2,3-Et2Pyz)](I)(2,3-Et2Pyz-C8H12N2) and [AgCF3CO2(Bpeta)] (II) (Bpeta is 4′4-bipyridylethane, C12H12N2) are synthesized. Their structures are determined. The crystals of compound I are monoclinic, space group P2(1)/n, a = 7.185(1), b = 14.754(1), c = 12.317(1)Å, β = 97.09(1)°, V = 1295.7(2) Å3, ρcalcd = 1.831 g/cm3, Z = 4. Structure I consists of infinite chains of doubled polymeric chains joined by silver carboxylate dimers [[Ag2(CF3CO2)2(Et2Pyz)2]. The coordination polyhedron of Ag+ is a distorted tetrahedron. The crystals of compound II are orthorhombic, space group Pbca, a = 13.555(3), b = 13.991(3), c = 16.449(3) Å, V = 3119.5(11) Å3, ρcalcd = 1.725 g/cm3, Z = 8. Doubled polymeric chains with the Ag…Ag bond (3.16 Å) are also formed in structure II. Supramolecular layers are formed in the structure due to the weak π-π-stacking interaction between the aromatic groups of chains. The CF3CO 2 ? anion is weakly bound to Ag+ (Ag-Oavg 2.790 Å).  相似文献   

16.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

17.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

18.
In the present research, CO2 and SO2 binding ability of different oil shale ashes and the effect of pre-treatment (grinding, preceding calcination) of these ashes on their binding properties and kinetics was studied using thermogravimetric, SEM, X-ray, and energy dispersive X-ray analysis methods. It was shown that at 700 °C, 0.03–0.28 mmol of CO2 or 0.16–0.47 mmol of SO2 was bound by 100 mg of ash in 30 min. Pre-treatment conditions influenced remarkably binding parameters. Grinding decreased CO2 binding capacities, but enhanced SO2 binding in the case of fluidized bed ashes. Grinding of pulverized firing ashes increased binding parameters with both gases. Calcination at higher temperatures decreased binding parameters of both types of ashes with both gases studied. Clarification of this phenomenon was given. Kinetic analysis of the binding process was carried out, mechanism of the reactions and respective kinetic constants were determined. It was shown that the binding process with both gases was controlled by diffusion. Activation energies in the temperature interval of 500–700 °C for CO2 binding with circulating fluidized bed combustion ashes were in the range of 48–82 kJ mol−1, for SO2 binding 43–107 kJ mol−1. The effect of pre-treatment on the kinetic parameters was estimated.  相似文献   

19.
Cu/Al layered double hydroxide (LDH) can be used as a catalyst for important processes such as cross-coupling reactions. This property may be improved by adding palladium by either impregnation or intercalation. Therefore, the LDH matrix and its composites with Pd0 or [PdCl4]2? have been prepared. By powder X-ray diffraction, FT-infrared spectroscopy, thermogravimetric and elemental analysis it was determined the LDH formula Cu4Al2(OH)12CO3.4H2O, with malachite as the second phase. The LDH thermal decomposition occurs between 120 and 600 °C, having as intermediates the double oxi-hydroxide and the mixed oxide phases. At 800 °C the residue is composed of CuO and CuAl2O4. The composites were obtained employing [PdCl4]2? and Pd2(dba)3 as precursors, and the solvent choice for this process was shown to be of significant importance: the materials obtained using DMF had Pd impregnated in the surface, while the usage of water promoted the intercalation of [PdCl4]2? in the LDH matrix. The thermogravimetric analysis was able to distinguish the mode of supporting palladium between the composites being a reliable characterization for such task.  相似文献   

20.
Be2(OH)2CO3 solubilities at 25°C in 0.7 M NaClO4 solutions containing variable NaHCO3 and Na2CO3 concentrations has been experimentally determined. The solubilities increase with increasing carbonate alkalinity. The results of the experiments do not contradict the suggestion that the mixed hydroxocarbonate complex Be2(OH)2CO 3 2? is the major beryllium solute species. At fluoride concentrations higher than 250 μmol/L, the Be2(OH)2CO3 solubilities noticeably increase as a result of the formation of beryllium fluoride complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号