共查询到20条相似文献,搜索用时 11 毫秒
1.
The intrinsic luminescence of glasses of the CaO–Ga2O3–GeO2 system has been investigated. High chemical purity and optical quality glasses, both undoped and doped with transition and rare-earth ions with different compositions, were obtained by high-temperature synthesis. The influences of the basic glass composition, impurities (Cr3+, Mn2+, Eu2+, Nd3+, Ho3+, Er3+, and Ce3+) and different kinds of excitation, on the intrinsic luminescence of the CaO–Ga2O3–GeO2 glasses were investigated. The nature and possible mechanisms of the intrinsic luminescence in glasses of this system are discussed. The proposed models of intrinsic luminescence are supported by electron spin resonance spectroscopy. 相似文献
2.
Botao Wu Shifeng Zhou Jinjun Ren Yanbo Qiao Danping Chen Congshan Zhu Jianrong Qiu 《Journal of Physics and Chemistry of Solids》2008,69(4):891-894
Transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 μs. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. 相似文献
3.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3–x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit. 相似文献
4.
A. A. Bahgat M. M. El-Samanoudy A. I. Sabry 《Journal of Physics and Chemistry of Solids》1999,60(12):832-1931
A glass system of the composition xWO3+(100−x)Pb3O4, with x=5, 10, 20 and 30 mol.% was prepared. The optical absorption, ac and dc conductivities are the subject of the present work. The optical absorption indicates that the electronic transition is indirect and is associated with phonon assisted transition. The exponential dependence of the absorption coefficient as a function of the incident photon energy suggests that the Urbach rule is obeyed, and indicates the formation of a band tail. On the other hand, ac conductivity measurements are performed in the frequency range 0.1–100 kHz, and in the temperature range 300–600 K. The results of the electrical conductivity are discussed on the basis of electronic glass conduction models. Correlated narrow-band limit for random sites and single polaron hopping model are found to describe the experimental results effectively. The dielectric constant was correlated to the optical band gap and a satisfactory relation was found. It was also possible to calculate the thermochromic properties from independent ac and dc measurements, and it was possible to evaluate the optical gap at 0 K by extrapolation. 相似文献
5.
For optical basicity and electronic polarizability, the previous studies basically concentrate on the wavelength range of the visible light region. However, heavy metal oxides glasses have a reputation of being good materials for infrared region. In this study, new data of the average electronic polarizability of the oxide ion O2-, optical basicity Λ and Yamashita–Kurosawa's interaction parameter A of Bi2O3–B2O3 glasses have been calculated in a wavelength range from 404.66 to 1083.03 nm. The present investigation suggests that both O2- and Λ increase gradually with increasing wave number, and A decreases with increasing wave number. Furthermore, close correlations are studied among O2-, Λ, A and refractive index n in this paper. Particularly, it has been found that a quantitative relationship between electronic polarizability and optical basicity is observed in a wavelength range from 404.66 to 1083.03 nm. Our present study extends over a wide range of O2-, Λ and A values. 相似文献
6.
An enhancement in NIR luminescence from Nd3+-doped Ce3+ co-doped SiO2+Al2O3 sol–gel glasses has been observed. The lasing transition (4F3/2→4I11/2) at 1072 nm from the dual rare-earth Nd3++Ce3+-doped glasses has shown an emission strength of about five times that of the single rare-earth ion Nd3+-doped glass. From the measurement of lifetimes of the transition at 1072 nm, the transfer rate (Wtr), critical distance (R0) and energy transfer efficiency (η) of the neodymium glasses have been calculated. 相似文献
7.
A composite ceramic coating containing Al2O3–ZrO2–Y2O3 was successfully prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) technique in an alkaline aluminate electrolyte. The morphology, elemental and phase composition, corrosion behavior and thermal stability of the uncoated and coated samples were studied by environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD), electrochemical corrosion test, high temperature oxidation test and thermal shock test. The results showed that the composite ceramic coating was composed of Al2O3, c-ZrO2, t-ZrO2, Y2O3 and some magnesium compounds, such as MgO, MgF2 and MgAl2O4. After PEO treatment, the corrosion potential of AZ91D alloy was increased and the corrosion current density was significantly reduced. Besides, the coated magnesium alloys also showed excellent high temperature oxidation resistance and thermal shock resistance at 500 °C environment. 相似文献
8.
(9−x)CaO·xMgO·15Na2O·60SiO2·16CaF2(x=0, 2, 4, 6, and 9) oxyfluoride glasses were prepared. Utilizing the Raman scattering technique together with 29Si and 19F MAS NMR, the effect of alkaline metal oxides on the Q species of glass was characterized. Raman results show that as magnesia is added at the expense of calcium oxide, the disproportional reaction Q3→Q4+Q2 (Qn is a SiO4 tetrahedron with n bridging oxygens) prompted due to the high ionic field strength of magnesia, magnesium oxide entered into the silicate network as tetrahedral MgO4, and removed other modifying ions for charge compensation. This reaction was confirmed by 29Si MAS NMR. 19F MAS NMR results show that fluorine exists in the form of mixed calcium sodium fluoride species in all glasses and no Si–F bonds were formed. As CaO is gradually replaced by MgO (x=6, 9), a proportion of the magnesium ions combines with fluorine to form the MgF+ species. Meanwhile, some part of Na+ ions complex F− in the form of F–Na(6). 相似文献
9.
I. V. Kityk J. Wasylak D. Dorosz J. Kucharski S. Benet H. Kaddouri 《Optics & Laser Technology》2001,33(7)
Infra-red luminescence (at wavelengths about 1600 and 2500 nm) from Er3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and helium liquid temperatures. The substantial influence of energy transfer processes between the host and Er3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only the application of the polarized pumping YAG–Nd laser beam (λ=1060 nm) stimulates substantial luminescence with quantum efficiency up to 24%. The role of phonon-relaxation subsystem in the observed luminescence is discussed. 相似文献
10.
B.A. Sava Adriana Diaconu M. Elisa C.E.A. Grigorescu I.C. Vasiliu A. Manea 《Superlattices and Microstructures》2007,42(1-6):314
This work is a study that deals with the synthesis by the sol–gel method and the structural characterization of the oxide powders belonging to the ternary system ZnO–TiO2–SiO2 (ZTS). The sol–gel synthesis starts from inorganic precursors, which have been processed under the variation of different technological parameters. We have investigated the dependence of the gelling time on pH and on the temperature of synthesis as well as on water and ammonia amounts. In the case of ZTS samples, the shortest gelling duration appears for low pH values when ZnO content is increased and at small ammonia concentrations when the ZnO content is decreased, respectively. On the contrary, ZTS samples containing high amounts of TiO2 provide evidence of a short gelling time for high pH and large ammonia amounts. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy provided structural information on these ternary oxide powders. These analyses revealed that relative high amounts of ZnO yields in a change from octahedral [ ZnO6] units to tetrahedral [ ZnO4] units in the powder structure. Optical phonons specific for SiO2 and TiO2 in both octahedral and tetrahedral groups are shown. High thermal and chemical stability was put in evidence by differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) in the 20–1000 C temperature range. 相似文献
11.
Upon irradiation with 60Co γ-rays Cordierite glasses with added TiO2 display two dominant ESR resonances arising from (a) Ti3+ ions (b) holes trapped at non-bridging oxygen ions singly bonded to [SiO4]? tetrahedra. The Ti3+ ions appear to be in D4h octahedral sites with the evident distributions between the principal g values arising from an isotropic randomness at the titanium sites. However, the g parameter distributions of the hole resonance, and their changes during the addition of TiO2 indicate the development of Silicate structures in the glasses which are the precursors of the major low temperature crystalline phases. The invariance of the hole and electron resonance lines with pre-crystallization heat treatments indicates that neither the titanium associated structures or the basic silicate structure of the glass are changed by such treatments. 相似文献
12.
Characterization by Auger electron spectroscopy (AES) and Fourier transformation infrared spectroscopy (FTIR) confirms (Ta2O5)x(Al2O3)1−x alloys are homogeneous pseudo-binary alloys with increased thermal stability with respect to end member oxides, Ta2O5 and Al2O3. Capacitance–voltage (C–V) and current density–voltage (J–V) data as a function of temperate show that the Ta d-states of the alloys act as localized electron traps, and are at an energy approximately equal to the conduction band offset of Ta2O5 with respect to Si. 相似文献
13.
The possibility to operate the two-photon absorption (TPA) of newly synthesized GeSe2–Ga2S3–PbI2 glasses using the CO laser beam (λ=5.5 μm) as a photoinducing one has been demonstrated. As the fundamental laser beam we have used the illumination of 10.6 μm passively modulated 0.5 ns CO2 laser with a rate repetition of about 10 Hz. We have established that the maximal photoinduced TPA is observed for the 8% doped samples (up to 14 cm/GW), which is achieved at a pump CO laser pump power density equal to about 0.6 GW/cm2. The undoped PbI2 samples show the TPA maximum at a pump power density of about 0.2 cm/GW. The minimal TPA values were observed for the samples with 5% of PbI2. The obtained results show that these materials can be used as effective optically operated optical limiters. 相似文献
14.
In the present work, an optimized set of Gibbs energy functions is proposed for the Y–Zr–O ternary system. We focus on the ZrO2–YO1.5 quasi-binary system, but reoptimizations of the Zr–O and Y–O binary systems are included as well. The parameters for the Y–Zr binary system were taken from a previous assessment.
The ZrO2–YO1.5 system was treated as a quasi-binary section of the Y–Zr–O ternary system. The existing experimental data on the ZrO2–YO1.5 system were carefully reviewed. The related parameters were optimized using both thermodynamic data and phase diagram data. A calculated phase diagram of the ZrO2–YO1.5 system is presented. Our optimization agrees well with most experimental data. Two calculated isothermal sections of the Y–Zr–O system at 1500 and 2000 K are also included. 相似文献
15.
The electric conductivity of ZnF2–AlF3–PbF2–LiF glasses has been studied in the frequency range 10 Hz–2 MHz and in the temperature range from 300 K to just below the glass transition temperature. The conductivity decreases with the increase in the LiF content in the composition, which results from the trapping of F− ions by Li+ ions. Small values of the stretching exponent β are observed for the present glasses. The value of the decoupling index decreases with an increase in LiF content, consistent with the composition dependence of the conductivity. 相似文献
16.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application. 相似文献
17.
Gurinder Pal SinghSimranpreet Kaur Parvinder KaurD.P. Singh 《Physica B: Condensed Matter》2012,407(8):1250-1255
The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV visible spectroscopic measurement techniques. XRD results have confirmed the glassy nature of the samples. The FTIR spectral analysis reveals that with the combined presence of ZnO and CeO2 contents in Al2O3-PbO-B2O3 glasses, more BO3 groups are transformed into BO4. The optical analysis reveals that optical band gap energy decreases more for CeO2-ZnO-Al2O3-PbO-B2O3 glasses (from 2.28 to 1.84 eV). The presence of CeO2 and ZnO in the glass samples causes more compaction of the borate network due to the formation of more BO4 groups and the presence of ZnO4 groups, which results an increase in density, refractive index and decrease of molar volume. 相似文献
18.
采用凝胶法分别制备出4.5ZnO-5.5Al2O3-90SiO2(ZAS)以及ZAS[DK]:RE3+ (RE=Eu,Tb,Ce) 透明微晶玻璃。利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光光谱仪(PL)等测试手段,研究了稀土离子掺杂浓度对ZAS微晶玻璃的结构和发光性能的影响。XRD结果表明,ZAS[DK]:RE3+ (RE=Eu,Tb,Ce)微晶玻璃包含ZnAl2O4晶相和SiO2非晶相,ZnAl2O4平均晶粒尺寸约为30 nm,稀土离子的掺杂没有显著改变原来的ZnAl2O4晶体结构。TEM结果表明,900 ℃时ZnAl2O4从ZAS体系中析出。PL光谱显示,Eu3+ 存在 5D0→7F2跃迁,ZAS[DK]:Eu3+在611 nm 处发出强烈的红色光;由于Tb3+ 的5D4→7F5 跃迁,ZAS[DK]:Tb3+在541 nm 处发出明亮的绿色光;ZAS[DK]:Ce3+ 在381 nm处显示了蓝光发射,对应于Ce3+ 的5d→4f 轨道跃迁。ZAS[DK]:RE3+ (RE=Eu, Tb, Ce)的PL发射光谱存在着浓度猝灭现象,Eu3+、Tb3+ 和Ce3+的最佳单掺杂摩尔分数分别为20%、20%和3%。CIE色度图表明,ZAS[DK]: RE3+ (RE=Eu,Tb,Ce)的色坐标分别位于红光、绿光和蓝光区域。实验结果表明,ZAS:RE3+ (RE=Eu,Tb,Ce) 微晶玻璃是一种良好的可用于全色显示的白光LED材料。 相似文献
19.
Dynamical heterogeneity (DH) in high-density Al2O3·2SiO2 melts has been studied in a model containing 3025 atoms via molecular dynamics (MD) simulation and at the fixed density of 4.0 g/cm3. Non-Gaussian parameter of atomic species in the system has been found and discussed. We found a clear evidence of the existence of DH in high-density Al2O3·2SiO2, which has specific features differed from those observed in the lower-density one. The most mobile and immobile atoms in the system have a tendency to form clusters and temperature dependence of their mean cluster size was found. On the other hand, diffusion constant of atomic species in the system has been calculated at temperatures ranged from 3150 to 7000 K. Calculations show that at relatively not high temperatures, temperature dependence of diffusion constant shows an Arrhenius law and at higher temperatures it shows a power law: D∝(T−TC)γ. Diffusion data of high-density melts have been compared with those for the low-density ones. Diffusion mechanism in the system has been discussed via the temperature dependence of diffusion constant ratio and activation energy. And we found the existence of cooperative diffusion mechanism in the system. 相似文献