首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this mini-review, recent advances on the role of a focused laser in micro- and nanofluidic systems is widely introduced with special interest in thermo-fluid dynamical aspects and their importance in optical manipulation. As a brief introduction to microfluidic systems, we describe the advantages and challenges of the use of micro- and nanoscale confinement in optical trapping, as well as standard fabrication techniques for micro- and nanofluidic systems. From thermo-fluid dynamical viewpoints, various phenomena that accompany a laser irradiation to fluidic devices, are explained in detail. These phenomena can affect the optical trapping of target materials significantly, and are classified into two categories: one that induces the fluid flow around the target and another that directly acts on it as an external force. These classes are reviewed by shedding light on some recent cutting-edge researches for optical manipulation. Some applications using thermo-fluid dynamics in microfluidic systems for the measurement of optical forces and for the separation, measurement, and detection of target materials are also introduced.  相似文献   

2.
Electrophoresis in capillary and microfluidic systems, used in analytical chemistry to separate charged species, are quite sensitive to surface phenomena in terms of separation performances. In order to improve theses performances, new surface functionalization techniques are required. There is a need for methods to provide fast and accurate quantification about surface charges at liquid/solid interfaces. We present a fast, simple, and low-cost technique for the measurement of the zeta-potential, via the modelization and the measurement of streaming currents. Due to the small channel cross section in microfluidic devices, the streaming current modelization is easier than the streaming potential measurement. The modelization combines microfluidic simulations based on the Navier-Stokes equation and charge repartition simulations based on the Poisson-Boltzmann equation. This method has been validated with square and circular cross section shape fused-silica capillaries and can be easily transposed to any lab-on-chip microsystems.  相似文献   

3.
Insulator‐based dielectrophoresis (iDEP) is a well‐known technique that harnesses electric fields for separating, moving, and trapping biological particle samples. Recent work has shown that utilizing DC‐biased AC electric fields can enhance the performance of iDEP devices. In this study, an iDEP device with 3D varying insulating structures analyzed in combination with DC biased AC fields is presented for the first time. Using our unique reactive ion etch lag, the mold for the 3D microfluidic chip is created with a photolithographic mask. The 3D iDEP devices, whose largest dimensions are 1 cm long, 0.18 cm wide, and 90 μm deep are then rapidly fabricated by curing a PDMS polymer in the glass mold. The 3D nature of the insulating microstructures allows for high trapping efficiency at potentials as low as 200 Vpp. In this work, separation of Escherichia coli from 1 μm beads and selective trapping of live Staphylococcus aureus cells from dead S. aureus cells is demonstrated. This is the first reported use of DC‐biased AC fields to selectively trap bacteria in 3D iDEP microfluidic device and to efficiently separate particles where selectivity of DC iDEP is limited.  相似文献   

4.
This work reports on the application of a microfluidic device integrating nanoscale LC to nanoelectrospray MS (nano-LC-chip-MS) for the analysis of complex protein digests. Peak profile analyses of more than 700 peptide ions, reproducibly detected across replicate nano-LC-chip-MS runs (n = 5), indicated that the system provided RSD values of 0.24% on retention time, +/- 30 ppm on m/z measurement and +/- 30% variation on intensity over three orders of magnitude. RP adsorbant media with different alkyl chains and particle size packed in both trapping and separation channels were investigated to improve the chromatographic performance of this system. A two-fold improvement in chromatographic peak capacity was achieved using microfluidic devices comprising a 5 mircrom C3 trap with 2.5 microm C18 trap separation channel compared to the traditional 5 microm C18 stationary phase. Enhanced sample selectivity for the identification of phosphopeptides was obtained by combining immobilized metal affinity media prior to peptide separation on the RP microfluidic device. This system was evaluated in the context of differential phosphoproteome analyses to identify changes in signaling events and protein expression of human monocytes following the administration of phorbol ester.  相似文献   

5.
Under suitable conditions, a DNA molecule in solution will develop a strong electric dipole moment. This induced dipole allows the molecule to be manipulated with field gradients, in a phenomenon known as dielectrophoresis (DEP). Pure dielectrophoretic motion of DNA requires alternate current (AC) electric fields to suppress the electrophoretic effect of the molecules net charge. In this paper, we present two methods for measuring the efficiency of DEP for trapping DNA molecules as well as a set of quantitative measurements of the effects of strand length, buffer composition, and frequency of the applied electric field. A simple configuration of electrodes in combination with a microfluidic flow chamber is shown to increase the concentration of DNA in solution by at least 60-fold. These results should prove useful in designing practical microfluidic devices employing this phenomenon either for separation or concentration of DNA.  相似文献   

6.
In this tutorial review we illustrate the origin and dependence on various system parameters of the ionic conductance that exists in discrete nanochannels as well as in nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in microscale liquid phase analysis systems. A particular complexity arises as external electrical fields are superimposed on internal chemical and electrical potential gradients for tailoring molecular transport. It is demonstrated that the variety of geometries in which the microfluidic/nanofluidic interfaces are realized share common, fundamental features of coupled mass and charge transport, but that phenomena behind the key steps in a particular application can be significantly tuned, depending on the morphology of a material. Thus, the understanding of morphology-related transport in internal and external electrical potential gradients is critical to the performance of a device. This addresses a variety of geometries (slits, channels, filters, membranes, random or regular networks of pores, etc.) and applications, e. g., the gating, sensing, preconcentration, and separation in multifunctional miniaturized devices. Inherently coupled mass and charge transport through ion-permselective (charge-selective) microfluidic/nanofluidic interfaces is analyzed with a stepwise-added complexity and discussed with respect to the morphology of the charge-selective spatial domains. Within this scenario, the electrostatics and electrokinetics in microfluidic and nanofluidic channels, as well as the electrohydrodynamics evolving at microfluidic/nanofluidic interfaces, where microfluidics meets nanofluidics, define the platform of central phenomena.  相似文献   

7.
Advantages of devices on a microchip platform are discussed in comparison with traditional systems. Stages and processes of creation of microfluidic chips are considered. The basic technologies of formation micro- and nanostructures on a substrate from various materials and techniques for microchip sealing are introduced. Special attention is given to microfluidic chips for separation and analysis of nucleic acids and proteins, as well as to microchips for PCR. Examples of integrated systems on the basis of microfluidic technique are considered. Data on the commercialization of devices based on microfluidic chips are presented.  相似文献   

8.
The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.  相似文献   

9.
Evenhuis CJ  Guijt RM  Macka M  Haddad PR 《Electrophoresis》2004,25(21-22):3602-3624
The separation and detection of inorganic ions on microfluidic devices has received little attention since the 'lab-on-a-chip' concept has revolutionised the field of electrokinetically driven analysis. This review presents a summary and discussion of the published literature on inorganic analysis using microfluidic devices and includes sections on electromigration separation methods, namely isotachophoresis (ITP), capillary electrophoresis (CE), and hyphenated ITP-CE, together with a brief account of flow injection analysis. The review concludes with the authors' perspective on future directions for inorganic analysis on microfluidic devices.  相似文献   

10.
Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting. Figure Model generated image (COMSOL) depicting the electric field gradient divided by the electric field that occurs within an array of insulating posts  相似文献   

11.
Microfluidics technology for manipulation and analysis of biological cells   总被引:1,自引:0,他引:1  
Analysis of the profiles and dynamics of molecular components and sub-cellular structures in living cells using microfluidic devices has become a major branch of bioanalytical chemistry during the past decades. Microfluidic systems have shown unique advantages in performing analytical functions such as controlled transportation, immobilization, and manipulation of biological molecules and cells, as well as separation, mixing, and dilution of chemical reagents, which enables the analysis of intracellular parameters and detection of cell metabolites, even on a single-cell level. This article provides an in-depth review on the applications of microfluidic devices for cell-based assays in recent years (2002–2005). Various cell manipulation methods for microfluidic applications, based on magnetic, optical, mechanical, and electrical principles, are described with selected examples of microfluidic devices for cell-based analysis. Microfluidic devices for cell treatment, including cell lysis, cell culture, and cell electroporation, are surveyed and their unique features are introduced. Special attention is devoted to a number of microfluidic devices for cell-based assays, including micro cytometer, microfluidic chemical cytometry, biochemical sensing chip, and whole cell sensing chip.  相似文献   

12.
Integrated continuous microfluidic liquid-liquid extraction   总被引:1,自引:0,他引:1  
We describe continuous flow liquid-liquid phase separation in microfluidic devices based on capillary forces and selective wetting surfaces. Effective liquid-liquid phase separation is achieved by using a thin porous fluoropolymer membrane that selectively wets non-aqueous solvents, has average pore sizes in the 0.1-1 microm range, and has a high pore density for high separation throughput. Pressure drops throughout the microfluidic network are modelled and operating regimes for the membrane phase separator are determined based on hydrodynamic pressure drops and capillary forces. A microfluidic extraction device integrating mixing and phase separation is realized by using silicon micromachining. Modeling of the phase separator establishes the operating limits. The device is capable of completely separating several organic-aqueous and fluorous-aqueous liquid-liquid systems, even with high fractions of partially miscible compounds. In each case, extraction is equivalent to one equilibrium extraction stage.  相似文献   

13.
Although paper‐based analysis is known for centuries, only during the last decade this simple substrate became an object of detailed microfluidic studies. In order to obtain optimum performance and separation of the analytes in a microfluidic channel, devices should be optimized, both in terms of architecture and paper properties. Enzyme immobilization methods can not only increase the storage stability but also have an impact on the flow in paper matrix, providing additional charges, and changing the porous structure of paper. Therefore it should be guaranteed that the method of choice will not obstruct the flux in the final device. Paper‐based device proposed in this study was composed of a bioactive channel, Pt working electrode, pencil drawn pseudo‐reference electrode, a buffer filled sponge providing the wicking solution and a stack of wicking pads to guarantee continuous flow. Based on our previous research we chose 4 methods of enzyme immobilization relying on different phenomena (adsorption, covalent linkage, layer‐by‐layer, capsules). Different channel architectures were also evaluated in order to achieve optimum time of the enzymatic reaction, separation of peaks and the time of measurement. Experimental results were compared with computer simulations. Final device could quantify glucose (2.0–10.0 mmol L?1) and uric acid (0.1–1.2 mmol L?1) in their clinical range with good repeatability.  相似文献   

14.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

15.
Church C  Zhu J  Xuan X 《Electrophoresis》2011,32(5):527-531
Dielectrophoresis has been widely used to focus, trap, concentrate, and sort particles in microfluidic devices. This work demonstrates a continuous separation of particles by size in a serpentine microchannel using negative dielectrophoresis. Depending on the magnitude of the turn-induced dielectrophoretic force, particles travelling electrokinetically through a serpentine channel either migrate toward the centerline or bounce between the two sidewalls. These distinctive focusing and bouncing phenomena are utilized to implement a dielectrophoretic separation of 1 and 3 μm polystyrene particles under a DC-biased AC electric field of 880 V/cm on average. The particle separation process in the entire microchannel is simulated by a numerical model.  相似文献   

16.
Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC-iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.  相似文献   

17.
We implemented 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled asparagine-linked glycan (N-glycan) profiling on a microfluidic electrophoresis platform. Using 11.5 cm effective length etched channels and 4% linear polyacrylamide as the separation matrix, the major N-glycans in human serum were profiled in 12 min with a resolution comparable to what is achieved for these analytes on gel-based DNA sequencers. This demonstration suggests a practical clinical application for high-speed compact analyzers which might be uniquely based on microfluidic devices.  相似文献   

18.
Kim J  Li Z  Park I 《Lab on a chip》2011,11(11):1946-1951
Integration of functional nanostructures within a microfluidic device can synergize the advantages of both unique properties of nanomaterials and diverse functionalities of microfluidics. In this paper, we report a novel and simple method for the in situ synthesis and integration of ZnO nanowires by controlled hydrothermal reaction within microfluidic devices. By modulating synthesis parameters such as the seed preparation, synthesis time, and heating locations, the morphology and location of synthesized nanowires can be easily controlled. The applications of such nanostructure-integrated microfluidics for particle trapping and chemiresistive pH sensing were demonstrated.  相似文献   

19.
Single cell analytics is a key method in the framework of proteom research allowing analyses, which are not subjected to ensemble-averaging, cell-cycle or heterogeneous cell-population effects. Our previous studies on single cell analysis in poly(dimethylsiloxane) microfluidic devices with native label-free laser induced fluorescence detection [W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti, Electrophoresis 26 (2005) 3689] were extended in order to improve separation efficiency and detection sensitivity. Here, we particularly focus on the influence of poly(oxyethylene) based coatings on the separation performance. In addition, the influence on background fluorescence is studied by the variation of the incident laser power as well as the adaptation of the confocal volume to the microfluidic channel dimensions. Last but not least, the use of carbon black particles further enhanced the detection limit to 25 nM, thereby reaching the relevant concentration ranges necessary for the label-free detection of low abundant proteins in single cells. On the basis of these results, we demonstrate the first electropherogram from an individual Spodoptera frugiperda (Sf9) cell with native label-free UV-LIF detection in a microfluidic chip.  相似文献   

20.
This paper describes on-chip micellar electrokinetic chromatography (MEKC) separation of bisphenol A and 3 kinds of alkylphenols, which have been recently recognized as endocrine disrupting chemicals for fish by the Japanese government, using microchip capillary electrophoresis with UV detection. We successfully obtained high-speed separation of the phenolic chemicals within 15 s as optimizing in microfluidic controls and MEKC separation conditions. We obtained fairly good linearity with correlation coefficient of over 0.98 from 0 to 50 mg/l phenolic chemicals except for 4-nonylphenol, which sample is the mixture of many geometrical isomers (r = 0.86). The values of the relative standard deviation for peak height in 50 mg/l phenolic chemicals were less than 8% except for bisphenol A (11.0%). The limits of detection obtained at a signal-to-noise ratio of 3 were from 5.6 to 20.0 mg/l. To realize on-site monitoring, we described strategy for on-chip MEKC analysis of the phenolic chemicals in waters using a portable analyzer based on microfluidic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号