首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Spatiotemporally activatable immune cells are promising for tumor immunotherapy owing to their potential high specificity and low side effects. Herein, we developed an X-ray-induced phenotypic transformation (X-PT) strategy through macrophage engineering for safe and efficient tumor immunotherapy. Without complex genetic engineering, the cell membranes of M0-type macrophages were chemically engineered with AS1411 aptamer-based polyvalent spherical aptamer (PSA) via the combination of metabolic glycan labelling and bioorthogonal click reaction. Owing to the superior specificity, affinity and polyvalent binding effects of the high-density AS1411 aptamers, the engineered macrophages could easily recognize and adhere to tumor cells. With further X-ray irradiation, reactive oxygen species (ROS) generated by the Au-based PSA could efficiently transform the accumulated macrophages in situ from biocompatible M0 into antitumoral M1 phenotype via activating the nuclear factor κB signaling pathway, thereby achieving tumor-specific killing. In vitro and in vivo experiments confirmed the high tumor recognition and X-ray-induced polarization effect of the engineered macrophages. Compared to natural macrophages, our engineered macrophages significantly inhibited tumor growth in mice even if the radiation dose was reduced by three-fold. We believe this X-PT strategy will open a new avenue for clinical immune cell-based therapy.

An X-ray-induced phenotypic transformation strategy (X-PT) through macrophage engineering was developed for safe and effective immunotherapy.  相似文献   

2.
Type-I photosensitizers (PSs) generate cytotoxic oxygen radicals by electron transfer even in a hypoxic environment. Nevertheless, the preparation of type-I PSs remains a challenge due to the competition of triplet–triplet energy transfer with O2 (type-II process). In this work, we report an effective strategy for converting the conventional type-II PS to a type-I PS by host–guest complexation. Electron-rich pillar[5]arenes are used as an electron donor and macrocyclic host to produce a host–guest complex with the traditional electron-deficient type-II PS, an iodide BODIPY-based guest. The host–guest complexation promotes intermolecular electron transfer from the pillar[5]arene moiety to BODIPY and then to O2 by the type-I process upon light-irradiation, leading to efficient generation of the superoxide radical (O2˙). The results of anti-tumor studies indicate that this supramolecular PS demonstrates high photodynamic therapy efficacy even under hypoxic conditions. This work provides an efficient method to prepare type-I PSs from existing type-II PSs by using a supramolecular strategy.

A supramolecular strategy is reported for converting the conventional photodynamic agents from a singlet oxygen generator to a superoxide radical generator by the host–guest interaction enhanced electron transfer.  相似文献   

3.
The phototoxicity of photosensitizers (PSs) pre and post photodynamic therapy (PDT), and the hypoxic tumor microenvironment are two major problems limiting the application of PDT. While activatable PSs can successfully address the PS phototoxicity pre PDT, and type I PS can generate reactive oxygen species (ROS) effectively in hypoxic environment, very limited approaches are available for addressing the phototoxicity post PDT. There is virtually no solution available to address all these issues using a single design. Herein, we propose a proof-of-concept on-demand switchable photosensitizer with quenched photosensitization pre and post PDT, which could be activated only in tumor hypoxic environment. Particularly, a hypoxia-normoxia cycling responsive type I PS TPFN-AzoCF3 was designed to demonstrate the concept, which was further formulated into TPFN-AzoCF3 nanoparticles (NPs) using DSPE-PEG-2000 as the encapsulation matrix. The NPs could be activated only in hypoxic tumors to generate type I ROS during PDT treatment, but remain non-toxic in normal tissues, pre or after PDT, thus minimizing side effects and improving the therapeutic effect. With promising results in in vitro and in vivo tumor treatment, this presented strategy will pave the way for the design of more on-demand switchable photosensitizers with minimized side effects in the future.  相似文献   

4.
Two-photon photodynamic therapy (TP-PDT) is a promising approach for the treatment of cancer because of its better penetration depth and superior spatial selectivity. Here, we describe an azo group containing cyclized-cyanine derivatives (ACC1 and ACC2) as a two-photon activated, type I based photosensitizer (PS). These small-molecule and heavy atom-free organic dyes showed marked reactive oxygen species (ROS)-generating ability under physiological conditions, as well as fast loading ability into the cells and negligible dark toxicity. Live cell analyses with one- and two-photon microscopy revealed that these dyes showed higher ROS generation ability upon two-photon excitation than upon one-photon excitation via the type I process. The PSs have superior PDT properties compared to conventional Visudyne and 5-ALA under mild conditions. These characteristics allowed for precise PDT at the target region in mimic tumor spheroids, demonstrating that the developed TP PS could be useful in efficient PDT applications and in designing various PSs.

Azo containing dyes as a two-photon selective and type I based photosensitizers (PSs) were developed that exhibit excellent photodynamic therapy properties under mild condition.  相似文献   

5.
6.
Phase separation in cell membranes promotes the assembly of transmembrane receptors to initiate signal transduction in response to environmental cues. Many cellular behaviors are manipulated by promoting membrane phase separation through binding to multivalent extracellular ligands. However, available extracellular molecule tools that enable manipulating the clustering of transmembrane receptors in a controllable manner are rare. In the present study, we report a DNA nanodevice that enhances membrane phase separation through the clustering of dynamic lipid rafts. This DNA nanodevice is anchored in the lipid raft region of the cell membrane and initiated by ATP. In a tumor microenvironment, this device could be activated to form a long DNA duplex on the cell membrane, which not only enhances membrane phase separation, but also blocks the interaction between the transmembrane surface adhesion receptor and extracellular matrix, leading to reduced migration. We demonstrate that the ATP-activated DNA nanodevice could inhibit cancer cell migration both in vitro and in vivo. The concept of using DNA to regulate membrane phase separation provides new possibilities for manipulating versatile cell functions through rational design of functional DNA structures.

A DNA nanodevice is developed to enhance the cell membrane phase separation in a tumor microenvironment to weaken the formation of focal adhesion. As a result, the migration of cancer cells is inhibited both in vitro and in vivo.  相似文献   

7.
The hypoxic microenvironment is considered the preponderant initiator to trigger a cascade of progression and metastasis of tumors, also being the major obstacle for oxygen consumption therapeutics, including photodynamic therapy (PDT). In this work, we report a programmable strategy at the molecular level to modulate the reciprocal interplay between tumor hypoxia, angiogenesis, and PDT outcomes by reinforcing synergistic action between a H2O2 scavenger, O2 generator and photosensitizer. The modular combination of a catalase biomimetic (tri-manganese cryptand, 1) and a photosensitizer (Ce6) allowed the rational design of a cascade reaction beginning with dismutation of H2O2 to O2 under hypoxic conditions to enhance photosensitization and finally photooxidation. Concurrently, this led to the decreased expression of the vascular endothelial growth factor (VEGF) and effectively reduced unwanted growth of blood vessels observed in the chick chorioallantois membrane (CAM). Notably, the proof-of-principle experiments using the tumor-bearing models proved successful in enhancing PDT efficacy, prolonging their life cycles, and improving immunity, which could be monitored by magnetic resonance imaging (MRI).

A programmable strategy at the molecular level to modulate the ratio of a catalyst and photosensitizer to maximize the collaborative efficiency of anti-angiogenesis and PDT.  相似文献   

8.
Parkinson''s disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL−1 to 8.66 ± 1.79 ng mL−1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.

The apoptosis pathways of senescent microglia cells induced by chiral NPs under the irradiation of 808 nm laser in the brain of PD mice.  相似文献   

9.
Phototherapy holds great promise for disease treatment; however, traditional “always-on” photoagents have been restricted to clinical translation due to their nonspecific response and side effects on normal tissues. Here, we show a tumor microenvironment activated photothermal and photoacoustic agent as an activatable prodrug and probe that allows precise cancer diagnosis and treatment. Such an in situ revitalized therapeutic and contrast agent is achieved via controllable plasmonic heating for thermoplasmonic activation. This enables monitoring of signal molecule dynamics, real-time photothermal and photoacoustic imaging of tumors and lymph node metastasis, and targeted photothermal therapy without unwanted phototoxicity to normal tissues. Our study provides a practical solution to the non-specificity problem in phototherapy and offers precision cancer therapeutic and theranostic strategies. This work may advance the development of ultrasensitive disease diagnosis and precision medicine.

A tumor microenvironment-activated photoagent is reported for precise photothermal therapy and photoacoustic imaging via controllable thermoplasmonics. The agent can sensitively image tumors and lymph node metastasis and specifically ablate tumors.  相似文献   

10.
Many cancer treatments including photodynamic therapy (PDT) utilize reactive oxygen species (ROS) to kill tumor cells. However, elevated antioxidant defense systems in cancer cells result in resistance to the therapy involving ROS. Here we describe a highly effective phototherapy through regulation of redox homeostasis with a biocompatible and versatile nanotherapeutic to inhibit tumor growth and metastasis. We systematically explore and exploit methylene blue adsorbed polydopamine nanoparticles as a targeted and precise nanocarrier, oxidative stress amplifier, photodynamic/photothermal agent, and multimodal probe for fluorescence, photothermal and photoacoustic imaging to enhance anti-tumor efficacy. Remarkably, following the glutathione-stimulated photosensitizer release to generate exogenous ROS, polydopamine eliminates the endogenous ROS scavenging system through depleting the primary antioxidant, thus amplifying the phototherapy and effectively suppressing tumor growth in vitro and in vivo. Furthermore, this approach enables a robust inhibition against breast cancer metastasis, as oxidative stress is a vital impediment to distant metastasis in tumor cells. Innovative, safe and effective nanotherapeutics via regulation of redox balance may provide a clinically relevant approach for cancer treatment.

Amplified oxidative stress achieved by modulating redox homeostasis with PDA–MB for highly effective synergistic phototherapy to inhibit primary tumors and metastases.  相似文献   

11.
Synthesis of arylboronates via borylation of C–C σ-bonds of aryl ketones was achieved by the combined use of photoenergy and a Rh catalyst. The cooperative system enables α-cleavage of photoexcited ketones to generate aroyl radicals via the Norrish type I reaction, which are successively decarbonylated and borylated with the rhodium catalyst. This work establishes a new catalytic cycle merging the Norrish type I reaction and Rh catalysis and demonstrates the new synthetic utility of aryl ketones as aryl sources for intermolecular arylation reactions.

Synthesis of arylboronates via borylation of C–C σ-bonds of aryl ketones was achieved by the combined use of photoenergy and a Rh catalyst.  相似文献   

12.
Cancer immunotherapy has remarkably improved the therapeutic effect of melanoma and non-small cell lung cancer in the clinic. Nevertheless, it showed disappointing clinical outcomes for treating immunosuppressive tumors, wherein aggressive T cells are rather limited in tumor sites. Therefore, regulating the behavior of T cells in tumor sites to increase their attack ability for suppressing the immunosuppressive tumor is highly desirable. Inspiringly, we designed a dendritic cell-like biomimetic nanoparticle (DMSNs3@HA) to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors. In this work, anti-CD3 and anti-CD28 were responsible for mimicking dendritic cells to activate T cells, and anti-PD-1 for blocking the pathway of PD-1/PD-L1 to break the immune “brake”, which synergistically regulated the behavior of T cells to attack cancer cells. Experimental results indicated that DMSNs3@HA can effectively activate T cells and improve their immune response to significantly inhibit the growth of breast cancer. Moreover, it also proved that T cell activation combining immune checkpoint blocking induced the “1 + 1 >2” immunotherapy effect against immunosuppressive tumors. We expect that this strategy will provide new insights into tumor immunotherapy by modulating T cell behavior.

A dendritic cell-like biomimetic nanoparticle has been designed to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors.  相似文献   

13.
Phototherapy has been a promising therapeutic modality for pathological tissue due to its spatiotemporal selectivity and non-invasive characteristics. However, as a core component of phototherapy, a single photosensitizer (PS) nanoplatform integrating excellent therapeutic efficiency and minimal side effects remains an urgent but unmet need. Here, we construct a J-aggregated nano-porphyrin termed MTE based on the self-assembly of methyl-pheophorbide a derivative MPa-TEG (MT) and natural polyphenolic compound epigallocatechin gallate (EGCG). Due to the synergistic interaction between similar large π-conjugated structural EGCG and MT, MTE with small and uniform size is obtained by effectively hindering Ostwald ripening of MT. Noteworthily, MTE not only effectively avoids the inadvertent side effects of phototoxicity during transport thank to the ability of reactive oxygen species (ROS) scavenging, but also achieves two-pathway augmented superior phototherapy: (1) enhancing photodynamic therapy (PDT) via inhibiting the expression of anti-apoptosis protein surviving; (2) achieving adjuvant mild-temperature laser interstitial thermal therapy (LITT) via reducing the tumor thermoresistance on account that MTE inhibits the overexpression of HSP 70 and HSP 90. This research not only offers a facile strategy to construct multicomponent nanoplatforms but also provides a new pathway for efficient and low-toxicity phototherapy, which is beneficial to the future clinical application.

J-aggregated nanoporphyrin (MTE) integrates minimal side effects and two-pathway augmented superior phototherapy: enhancing photodynamic therapy (PDT) and achieving adjuvant mild-temperature laser interstitial thermal therapy (LITT).  相似文献   

14.
Stimuli-activatable and subcellular organelle-targeted agents with multimodal therapeutics are urgently desired for highly precise and effective cancer treatment. Herein, a CO/light dual-activatable Ru(ii)-oligo-(thiophene ethynylene) (Ru-OTE) for lysosome-targeted cancer therapy is reported. Ru-OTE is prepared via the coordination-driven self-assembly of a cationic conjugated oligomer (OTE-BN) ligand and a Ru(ii) center. Upon the dual-triggering of internal gaseous signaling molecular CO and external light, Ru-OTE undergoes ligand substitution and releases OTE-BN followed by dramatic fluorescence recovery, which could be used for monitoring drug delivery and imaging guided anticancer treatments. The released OTE-BN selectively accumulates in lysosomes, physically breaking their integrity. Then, the generated cytotoxic singlet oxygen (1O2) causes severe lysosome damage, thus leading to cancer cell death via photodynamic therapy (PDT). Meanwhile, the release of the Ru(ii) core also suppresses cancer cell growth as an anticancer metal drug. Its significant anticancer effect is realized via the multimodal therapeutics of physical disruption/PDT/chemotherapy. Importantly, Ru-OTE can be directly photo-activated using a two-photon laser (800 nm) for efficient drug release and near-infrared PDT. Furthermore, Ru-OTE with light irradiation inhibits tumor growth in an MDA-MB-231 breast tumor model with negligible side effects. This study demonstrates that the development of an activatable Ru(ii)-conjugated oligomer potential drug provides a new strategy for effective subcellular organelle-targeted multimodal cancer therapeutics.

The anticancer therapeutics of lysosome disruption/PDT/chemotherapy based on Ru-OTE complex was achieved, which provides a new strategy for developing multimodal and effective stimuli-activatable subcellular organelle-targeted cancer therapeutics.  相似文献   

15.
An in situ supramolecular self-assembly in the subcellular organelles could provide a new strategy to treat diseases. Herein, we report a protonation-activated in situ supramolecular self-assembly system in the lysosomes, which could destabilize the lysosome membrane, resulting in the selective suppression of cancer cells. In this system, pyridyl-functionalized tetraphenylethylene (TPE-Py) was protonated in the lysosomes of A549 lung cancer cells to form octahedron-like structures with cucurbit[8]uril (CB[8]), which impaired the integrity of the lysosome membrane, resulting in selective suppression of cancer cells. Moreover, its anticancer efficiency was also systematically evaluated in vivo, triggering the apoptosis of tumor tissues with ignorable effects on normal organs. Overall, the protonation-activated self-assembly in the lysosomes based on the host–guest complexation would provide a method for novel anti-cancer systems.

A protonation-activated supramolecular self-assembly through host–guest interaction was successfully constructed in lysosomes, which could selectively suppress the tumor growth.  相似文献   

16.
Photodynamic therapy (PDT) has attracted much attention in disease treatments. However, the exploration of a novel method for the construction of outstanding photosensitizers (PSs) with stimuli-responsiveness remains challenging. In this study, we, for the first time, report a novel and effective strategy to boost reactive oxygen species (ROS) generation by bridging donor–acceptor (D–A) type PSs with the azo group. In contrast to the counterpart without azo-bridging, the azo-bridged PSs exhibit remarkably enhanced ROS generation via both type-I and type-II photochemical reactions. Theoretical calculations suggest that azo-bridging leads to a prominent reduction in ΔEST, thereby enabling enhanced ROS generation via efficient intersystem crossing (ISC). The resulting azo-bridged PS (denoted as Azo-TPA-Th(+)) exhibits a particularly strong bactericidal effect against clinically relevant drug-resistant bacteria, with the killing efficiency up to 99.999999% upon white light irradiation. Since azo-bridging generates an azobenzene structure, Azo-TPA-Th(+) can undergo trans-to-cis isomerization upon UV irradiation to form emissive aggregates by shutting down the ISC channel. By virtue of the fluorescence turn-on property of unbound Azo-TPA-Th(+), we propose a straightforward method to directly discern the effective photodynamic bactericidal dose without performing the tedious plate-counting assay. This study opens a brand-new avenue for the design of advanced PSs with both strong ROS generation and stimuli-responsiveness, holding great potential in high-quality PDT with rapid prediction of the therapeutic outcome.

A novel and effective strategy is developed for enhanced photosensitization by bridging D–A type photosensitizers with the azo group, holding great potential in high-quality photodynamic therapy with rapid prediction of the therapeutic outcome.  相似文献   

17.
The Cover Picture shows the conversion of acrylic acid and n‐butanol into butyl acrylate through an engine of Novozym 435, in which the powering piston CalB (Candida antarctica lipase B) is supported by the newly developed GMIM‐I (glucosyl‐methyl‐imidazolium iodide). The authors acknowledge Dr. Johanna Meyer (University of Hannover) for the creation of the cover image. More information can be found in the Research Article by S. Jopp et al. (DOI: 10.1002/chem.202200135).  相似文献   

18.
For epilepsy therapy, one-third of the patients worldwide are resistant to antiepileptic drugs mainly due to the existence of the blood–brain barrier (BBB) that prevents the drugs from reaching the epileptic lesions. Here, we design a double targeting nanoparticle carrying lamotrigine (LTG) to cross the BBB and further concentrate at the neurons. We prepare the nanoparticles on a microfluidic chip by encapsulating LTG in poly(lactic-co-glycolic acid) (PLGA) to form a core (PL) and capping the core with a shell of lipids conjugated with the D-T7 peptide (targeting the BBB) and Tet1 peptide (targeting the neuron) to form D-T7/Tet1-lipids@PL nanoparticles (NPs). In vitro and in vivo experiments show that D-T7/Tet1-lipids@PL NPs have excellent neuron targeting, antiepileptic, and protecting effects. Our approach provides a new strategy for improving the therapeutic efficacy of existing antiepileptic drugs.

Dual-targeting nanoparticles containing D-T7 peptide and Tet1 peptide were designed for carrying lamotrigine (LTG) to cross the blood–brain barrier and further concentrate at the epilepsy lesions for treating epilepsy with high biosafety.  相似文献   

19.
Pandemic and epidemic spread of antibiotic-resistant bacterial infections would result in a huge number of fatalities globally. To combat antibiotic-resistant pathogens, new antimicrobial strategies should be explored and developed to confront bacteria without acquiring or increasing drug-resistance. Here, oxygen saturated perfluorohexane (PFH)-loaded mesoporous carbon nanoparticles (CIL@ICG/PFH@O2) with photothermal therapy (PTT) and enhanced photodynamic therapy (PDT) utility are developed for antibacterial applications. Ionic liquid groups are grafted onto the surface of mesoporous carbon nanoparticles, followed by anion-exchange with the anionic photosensitizer indocyanine green (ICG) and loading oxygen saturated PFH to prepare CIL@ICG/PFH@O2. These CIL@ICG/PFH@O2 nanoparticles exhibit effective PTT and enhanced PDT properties simultaneously upon 808 nm light irradiation. In vitro assays demonstrate that CIL@ICG/PFH@O2 shows a synergistic antibacterial action against antibiotic-resistant pathogens (methicillin-resistant Staphylococcus aureus and kanamycin-resistant Escherichia coli). Moreover, CIL@ICG/PFH@O2 could effectively kill drug-resistant bacteria in vivo to relieve inflammation and eliminate methicillin-resistant Staphylococcus aureus-wound infection under NIR irradiation, and the released oxygen can increase collagen deposition, epithelial tissue formation and blood vessel formation to promote wound healing while enhancing the PDT effect. This study proposes a platform with enhanced PTT/PDT effects for effective, controlled, and precise treatment of topical drug-resistant bacterial infections.

We report oxygen saturated perfluorohexane (PFH)-loaded mesoporous carbon nanoparticles (CIL@ICG/PFH@O2) with photothermal therapy (PTT) and enhanced photodynamic therapy (PDT) utility for antibacterial applications.  相似文献   

20.
A big question in the field of plasmonic photocatalysis is why a typical photocatalyst consisting of gold nanoparticles and rutile titanium(iv) oxide (Au/R-TiO2) usually exhibits activity much higher than that of Au/anatase TiO2 (Au/A-TiO2) under visible-light irradiation. Shedding light on the origin should present important guidelines for the material design of plasmonic photocatalysts. Au nanoparticles (NPs) were loaded on ordinary irregular-shaped TiO2 particles by the conventional deposition precipitation method. Transmission electron microscopy analyses for the Au/TiO2 particles ascertain that faceting of Au NPs is induced on R-TiO2 by using a domain-matching epitaxial junction with the orientation of (111)Au//(110)R-TiO2, whereas non-faceted hemispherical Au NPs are exclusively formed on A-TiO2. The faceting probability of Au NPs (Pf) on R-TiO2 increases with decreasing Au particle size (dAu) to reach 14% at dAu = 3.6 nm. A clear positive correlation between the photocatalytic activity and Pf in several test reactions indicates that the heteroepitaxial junction-induced faceting of Au NPs is the principal factor for governing the plasmonic photocatalytic activity of Au/TiO2. In light of this finding, R-TiO2 nanorods with a high percentage (95%) of {110} facets were hydrothermally synthesized and used for the support of Au NPs. Consequently, the Pf value increases to as much as 94% to enhance the photocatalytic activity with respect to that of Au/R-TiO2 with Pf = 14% by factors of 2.2–4.4 depending on the type of reaction.

In the represented plasmonic photocatalyst consisting of Au nanoparticles (NPs) and TiO2, the combination of crystal facet engineering of TiO2 and atom-level-interface control between Au NP and TiO2 gives rise to a drastic activity enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号