. Decomposer equations:
f(f*(x)f(y))=f(y),f(f(x)f*(y))=f(x)
.Strong decomposer equations:
f(f*(x)y)=f(y),f(xf*(y))=f(x)
.Canceler equations:
f(f(x)y)=f(xy),f(xf(y))=f(xy),f(xf(y)z)=f(xyz)
, where f*(x) f(x) = f (x) f* (x) = x. In this paper we solve them and introduce the general solution of the decomposer and strong decomposer equations in the sets with a binary operation and semigroups respectively and also associative equations in arbitrary groups. Moreover we state some equivalent equations to them and study the relations between the above equations. Finally we prove that the associative equations and the system of strong decomposer and canceler equations do not have any nontrivial solutions in the simple groups.  相似文献   

10.
The Fixed Points of Contractions of <Emphasis Type="Italic">f</Emphasis>-Quasimetric Spaces     
E. S. Zhukovskiy 《Siberian Mathematical Journal》2018,59(6):1063-1072
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

11.
Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source     
Evangelos A. Latos  Dimitrios E. Tzanetis 《NoDEA : Nonlinear Differential Equations and Applications》2010,17(2):137-151
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

12.
Stable viscosity matrices for systems of conservation laws     
Andrew Majda  Robert L Pego 《Journal of Differential Equations》1985,56(2):229-262
A natural class of appropriate viscosity matrices for strictly hyperbolic systems of conservation laws in one space dimension, u1 + f(u)x = 0, u?Rm, is studied. These matrices are admissible in the sense that small-amplitude shock wave solutions of the hyperbolic system are shown to be limits of smooth traveling wave solutions of the parabolic system ut + f(u)x = v(Dux)x as ifv → 0 if D is in this class. The class is determined by a linearized stability requirement: The Cauchy problem for the equation u1 + f′(u0) ux = vDuxx should be well posed in L2 uniformly in v as v → 0. Previous examples of inadmissible viscosity matrices are accounted for through violation of the stability criterion.  相似文献   

13.
Padé-type approximants with orthogonal generating polynomials     
Marc Prevost 《Journal of Computational and Applied Mathematics》1983,9(4):333-346
The interpolation of the function x → 1/(1 ? xt) generating the series f(t) = ∑i = 0citi at the zeros of an orthogonal polynomial with respect to a distribution d α satisfying some conditions will give us a process for accelerating the convergence of fn(t) = ∑ni = 0citi. Then, we shall see that the polynomial of best approximation of x → 1/(1 ? xt) over some interval or its development in Chebyshev polynomials Tn or Un are only particular cases of the main theorem.At last, we shall show that all these processes accelerate linear combinations with positive coefficients of totally monotonic and oscillating sequences.  相似文献   

14.
F-limit points in dynamical systems defined on the interval     
Piotr Szuca 《Central European Journal of Mathematics》2013,11(1):170-176
Given a free ultrafilter p on ? we say that x ∈ [0, 1] is the p-limit point of a sequence (x n ) n∈? ? [0, 1] (in symbols, x = p -lim n∈? x n ) if for every neighbourhood V of x, {n ∈ ?: x n V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p : [0, 1] → [0, 1] is defined by f p (x) = p -lim n∈? f n (x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p . For a filter F we also define the ω F -limit set of f at x. We consider a question about continuity of the multivalued map xω f F (x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.  相似文献   

15.
The π-π-theorem for manifold pairs with boundaries     
Yu. V. Muranov  D. Repovš  M. Cencelj 《Mathematical Notes》2007,81(3-4):356-364
The surgery obstruction of a normal map to a simple Poincaré pair (X, Y) lies in the relative surgery obstruction group L *(π 1(Y) → π 1(X)). A well-known result of Wall, the so-called π-π-theorem, states that in higher dimensions a normal map of a manifold with boundary to a simple Poincaré pair with π 1(X) ? π 1(Y) is normally bordant to a simple homotopy equivalence of pairs. In order to study normal maps to a manifold with a submanifold, Wall introduced the surgery obstruction groups LP * for manifold pairs and splitting obstruction groups LS *. In the present paper, we formulate and prove for manifold pairs with boundary results similar to the π-π-theorem. We give direct geometric proofs, which are based on the original statements of Wall’s results and apply obtained results to investigate surgery on filtered manifolds.  相似文献   

16.
Necessary conditions for embedding of classes of functions     
J. Németh 《Analysis Mathematica》1977,3(3):213-219
qPУстьf *(x) — НЕВОжРАстА УЩАь ФУНкцИь, РАВНОИж МЕРИМАь с ФУНкцИЕИf(x)¦, пРИНАД-лЕжАЩЕИ клАссУΦ(L). В стАтьЕ пОлУЧЕНО ОБО БЩЕНИЕ ОДНОгО РЕжУль тАтА Ё. А. стОРОжЕНкО. В тЕРМИНА х МОДУль НЕпРЕРыВНОстИ ФУНкц ИИf(x) ДАНО НЕОБхОДИМО Е УслОВИЕ Дль пРИНАДлЕжНОстИ Ф УНкцИИf(x) клАссУψ(L)?(L)(?Φ(L)), гДЕ ФУ НкцИИΦ(И),ψ(И) И?(u) — БОл ЕЕ ОБЩИЕ, ЧЕМ, сООтВЕт-стВ ЕННО,И Р ,И v И ln(1+u) (p相似文献   

17.
On the measurability of functions with quasi-continuous and upper semi-continuous vertical sections     
Zbigniew Grande 《Mathematica Slovaca》2013,63(4):793-798
Let f: ?2 → ? be a function with upper semicontinuous and quasi-continuous vertical sections f x (t) = f(x, t), t, x ∈ ?. It is proved that if the horizontal sections f y (t) = f(t, y), y, t ∈ ?, are of Baire class α (resp. Lebesgue measurable) [resp. with the Baire property] then f is of Baire class α + 2 (resp. Lebesgue measurable and sup-measurable) [resp. has Baire property].  相似文献   

18.
О приближении функци й средними Чезаро вто рого     
С. А. ТЕЛЯКОВСКИЙ 《Analysis Mathematica》1982,8(4):305-319
Let σ n 2 (f, x) be the Cesàro means of second order of the Fourier expansion of the function f. Upper bounds of the deviationf(x)-σ n 2 (f, x) are studied in the metricC, while f runs over the class \(\bar W^1 C\) , i. e., of the deviation $$F_n^2 (\bar W^1 ,C) = \mathop {\sup }\limits_{f \in \bar W^1 C} \left\| {f(x) - \sigma _n^2 (f,x)} \right\|_c$$ . It is proved that the function $$g^* (x) = \frac{4}{\pi }\mathop \sum \limits_{v = 0}^\infty ( - 1)^v \frac{{\cos (2v + 1)x}}{{(2v + 1)^2 }}$$ , for whichg *′(x)=sign cosx, satisfies the following asymptotic relation: $$F_n^2 (\bar W^1 ,C) = g^* (0) - \sigma _n^2 (g^* ,0) + O\left( {\frac{1}{{n^4 }}} \right)$$ , i.e.g * is close to the extremal function. This makes it possible to find some of the first terms in the asymptotic formula for \(F_n^2 (\bar W^1 ,C)\) asn → ∞. The corresponding problem for approximation in the metricL is also considered.  相似文献   

19.
Some generalizations of the first Fredholm theorem to multivalued A-proper mappings with applications to nonlinear elliptic equations     
P.S Milojević 《Journal of Mathematical Analysis and Applications》1978,65(2):468-502
Let X and Y be real normed spaces with an admissible scheme Γ = {En, Vn; Fn, Wn} and T: X → 2YA-proper with respect to Γ such that dist(y, A(x)) < kc(∥ x ∥) for all y in T(x) with ∥ x ∥ ? R for some R > 0 and k > 0, where c: R+R+ is a given function and A: X → 2Y a suitable possibly not A-proper mapping. Under the assumption that either T or A is odd or that (u, Kx) ? 0 for all u in T(x) with ∥ x ∥ ? r > 0 and some K: X → Y1, we obtain (in a constructive way) various generalizations of the first Fredholm theorem. The unique approximation-solvability results for the equation T(x) = f with T such that T(x) ? T(y) ?A(x ? y) for x, y in X or T is Fréchet differentiable are also established. The abstract results for A-proper mappings are then applied to the (constructive) solvability of some boundary value problems for quasilinear elliptic equations. Some of our results include the results of Lasota, Lasota-Opial, Hess, Ne?as, Petryshyn, and Babu?ka.  相似文献   

20.
On a nonconvolution Volterra resolvent     
Olof J Staffans 《Journal of Mathematical Analysis and Applications》1985,108(1):15-30
Under fairly weak assumptions, the solutions of the system of Volterra equations x(t) = ∝0ta(t, s) x(s) ds + f(t), t > 0, can be written in the form x(t) = f(t) + ∝0tr(t, s) f(s) ds, t > 0, where r is the resolvent of a, i.e., the solution of the equation r(t, s) = a(t, s) + ∝0ta(t, v) r(v, s)dv, 0 < s < t. Conditions on a are given which imply that the resolvent operator f0tr(t, s) f(s) ds maps a weighted L1 space continuously into another weighted L1 space, and a weighted L space into another weighted L space. Our main theorem is used to study the asymptotic behavior of two differential delay equations.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schrödinger operator Hu = -Δu + V(x)u, where V(x) → 0 as ¦x¦ → ∞, is considered in L2(Rm) for m?3. The asymptotic formula $$N(\lambda ,V) \sim \Upsilon _m \int {(\lambda - V(x))_ + ^{{m \mathord{\left/ {\vphantom {m {2_{dx} }}} \right. \kern-\nulldelimiterspace} {2_{dx} }}} ,} \lambda \to ---0,$$ is established for the number N(λ, V) of the characteristic values of the operator H which are less than λ. It is assumed about the potential V that V = Vo + V1; Vo < 0, ¦Vo =o (¦Vo¦3/2) as ¦x¦ → ∞; σ (t/2, Vo) ?cσ (t. Vo) and V1∈Lm/2,loc, σ(t, V1) =o (σ (t, Vo)), where σ (t,f)= mes {x:¦f (x) ¦ > t).  相似文献   

2.
We consider a class of nonlinear recurrent systems of the form \( {\Lambda_p} = \frac{1}{p}\sum\limits_{{p_1} = 1}^{p - 1} {f\left( {\frac{{{p_1}}}{p}} \right){\Lambda_{{p_1}}}{\Lambda_{p - {p_1}}}} \), p > 1, where f is a given function on the interval [0, 1] and Λ1 = x is an adjustable real-valued parameter. Under some suitable assumptions on the function f, we show that there exists an initial value x * for which Λ p = Λ p (x * ) → const as p. More precise asymptotics of Λ p is also derived.  相似文献   

3.
Functional equations of the form f(x + y)g(x ? y) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + y ? z) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ? → ? and f1, f2, f3, ψ j : ? → ?, φ j : ?2 → ? in the cases of n = 3 and m = 4.  相似文献   

4.
A function f : N → R is called additive if f(mn)= f(m)+f(n)for all m, n with(m, n)= 1. Let μ(x)= max n≤x(f(n)f(n + 1))and ν(x)= max n≤x(f(n + 1)f(n)). In 1979, Ruzsa proved that there exists a constant c such that for any additive function f , μ(x)≤ cν(x 2 )+ c f , where c f is a constant depending only on f . Denote by R af the least such constant c. We call R af Ruzsa's constant on additive functions. In this paper, we prove that R af ≤ 20.  相似文献   

5.
Let {xn} be a sequence of real numbers and let a(n) be a sequence of positive real numbers, with A(N) = Σn=1Na(n). Tsuji has defined a notion of a(n)-uniform distribution mod 1 which is related to the problem of determining those real numbers t0 for which A(N)?1 Σn=1Na(n)e?it0xn → 0 as N → ∞. In case f(s) = Σn=1a(n)e?sxn, s = σ + it, is analytic in the right half-plane 0 < σ, and satisfies a certain smoothness condition as σ → 0 +, we show that f(σ)?1f(σ + it0) → 0 as σ → 0 + if and only if A(N)?1 Σn=1Na(n)e?it0xn → 0 as N → ∞.  相似文献   

6.
Poincaré series     
Let Nα denote the number of solutions to the congruence F(xi,..., xm) ≡ 0 (mod pα) for a polynomial F(xi,..., xm) with integral p-adic coefficients. We examine the series \(\varphi (t) = \sum\nolimits_{\alpha = 0}^\infty {N_{\alpha ^{t^\alpha } } } \) . called the Poincaré series for the polynomial F. In this work we prove the rationality of the series ?(t) for a class of isometrically equivalent polynomials of m variables, m ≥ 2, containing the sum of two forms ?n(x, y) + ?n+1(x, y) respectively of degrees n and n+1, n ≥ 2. In particular the Poincaré series for any third degree polynomial F3(x, y) (over the set of unknowns) with integral p-adic coefficients is a rational function of t.  相似文献   

7.
We address the analysis of the following problem: given a real Hölder potential f defined on the Bernoulli space and μ f its equilibrium state, it is known that this shift-invariant probability can be weakly approximated by probabilities in periodic orbits associated to certain zeta functions. Given a Hölder function f > 0 and a value s such that 0 < s < 1, we can associate a shift-invariant probability ν s such that for each continuous function k we have $ \int {kd} v_s = \frac{{\sum\nolimits_{n = 1}^\infty {\sum\nolimits_{x \in Fix_n } {e^{sf^n (x) - nP(f)\frac{{k^n (x)}} {n}} } } }} {{\sum\nolimits_{n = 1}^\infty {\sum\nolimits_{x \in Fix_n } {e^{sf^n (x) - nP(f)} } } }}, $ , where P(f) is the pressure of f, Fix n is the set of solutions of σ n (x) = x, for any n ∈ ?, and f n (x) = f(x) + f(σ (x)) + … + f(σ n?1(x)). We call νs a zeta probability for f and s, because it can be obtained in a natural way from the dynamical zeta-functions. From the work of W. Parry and M. Pollicott it is known that ν s → µ f , when s → 1. We consider for each value c the potential c f and the corresponding equilibrium state μ cf . What happens with ν s when c goes to infinity and s goes to one? This question is related to the problem of how to approximate the maximizing probability for f by probabilities on periodic orbits. We study this question and also present here the deviation function I and Large Deviation Principle for this limit c → ∞, s → 1. We will make an assumption: for some fixed L we have lim c→∞, s→1 c(1 ? s) = L > 0. We do not assume here the maximizing probability for f is unique in order to get the L.D.P.  相似文献   

8.
On the basis of a random sample of size n on an m-dimensional random vector X, this note proposes a class of estimators fn(p) of f(p), where f is a density of X w.r.t. a σ-finite measure dominated by the Lebesgue measure on Rm, p = (p1,…,pm), pj ≥ 0, fixed integers, and for x = (x1,…,xm) in Rm, f(p)(x) = ?p1+…+pm f(x)/(?p1x1 … ?pmxm). Asymptotic unbiasedness as well as both almost sure and mean square consistencies of fn(p) are examined. Further, a necessary and sufficient condition for uniform asymptotic unbisedness or for uniform mean square consistency of fn(p) is given. Finally, applications of estimators of this note to certain statistical problems are pointed out.  相似文献   

9.
In the previous researches [2,3] b-integer and b-decimal parts of real numbers were introduced and studied by M.H. Hooshmand. The b-parts real functions have many interesting number theoretic explanations, analytic and algebraic properties, and satisfy the functional equation f (f(x) + y - f(y)) = f(x). These functions have led him to a more general topic in semigroups and groups (even in an arbitrary set with a binary operation [4] and the following functional equations have been introduced: Associative equations:
f(xf(yz))=f(f(xy)z),f(xf(yz))=f(f(xy)z)=f(xyz)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号