首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Photo-assisted reverse water gas shift (RWGS) reaction is regarded green and promising in controlling the reaction gas ratio in Fischer Tropsch synthesis. But it is inclined to produce more byproducts in high H2 concentration condition. Herein, LaInO3 loaded with Ni-nanoparticles (Ni NPs) was designed to obtain an efficient photothermal RWGS reaction rate, where LaInO3 was enriched with oxygen vacancies to roundly adsorbing CO2 and the strong interaction with Ni NPs endowed the catalysts with powerful H2 activity. The optimized catalyst performed a large CO yield rate (1314 mmol gNi−1 h−1) and ≈100 % selectivity. In situ characterizations demonstrated a COOH* pathway of the reaction and photoinduced charge transfer process for reducing the RWGS reaction active energy. Our work provides valuable insights on the construction of catalysts concerning products selectivity and photoelectronic activating mechanism on CO2 hydrogenation.  相似文献   

2.
In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.  相似文献   

3.
The kinetic of the direct CO_2 hydrogenation to higher hydrocarbons via Fischer–Tropsch synthesis(FTS)and reverse water-gas shift reaction(RWGS) mechanisms over a series of precipitated Fe/Cu/K catalysts with various particle sizes was studied in a well mixed, continuous spinning basket reactor. The iron catalysts promoted with copper and potassium were prepared via precipitation technique in various alcohol/water mixtures to achieve a series of catalyst particle sizes between 38 and 14 nm. A new kinetic model for direct CO_2 hydrogenation was developed with combination of kinetic model for FTS reaction and RWGS equilibrium condition. For estimate of structure sensitivity of indirect CO_2 hydrogenation to higher hydrocarbons, the kinetic parameters of developed model are evaluated for a series of iron catalysts with various particle sizes. For kinetic study a wide range of syngas conversions have been obtained by varying experimental conditions. The results show that the new developed model fits favorably with experimental data. The values of activation energies for indirect CO_2 hydrogenation reaction are fall within the narrow range of 23–16 kJ/mol.  相似文献   

4.
CO2 hydrogenation for syngas can alleviate the pressure of un-controlled emissions of CO2 and bring enormous economic benefits. Advantageous Ni-catalysts have good CO2 hydrogenation activity and high CO selectivity merely over 700 °C. Herein, we introduced Cu into Ni catalysts, which were evaluated by H2-TPR, XRD, BET, in-situ XPS and CO2-TPD, and their CO2 hydrogenation activity and CO selectivity were significantly affected by the Ni/Cu ratios, which was rationalized by the synergistic effect of bimetallic catalysts. In addition, the reduction temperatures of studied catalysts apparently affected the CO2 hydrogenation, which were caused by the number and dispersion of the active species. It's found that the Ni1Cu1-400 had good stability, high CO selectivity (up to 90%), and fast formation rate (1.81×10−5 mol/gcat/s) at 400 °C, which demonstrated a good potential as a superior catalyst for reverse water-gas shift (RWGS) reaction.  相似文献   

5.
A one‐step ligand‐free method based on an adsorption–precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO2) nanocatalysts. Ir species demonstrated a strong metal–support interaction (SMSI) with the CeO2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO2) hydrogenation reaction it was shown that the chemical state of Ir species—induced by a SMSI—has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single‐site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal–support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub‐nano, and atomic scales.  相似文献   

6.
CO2 methanation is an important reaction in CO2 valorization. Because of the high kinetic barriers, the reaction usually needs to proceed at higher temperature (>300 °C). High-efficiency CO2 methanation at low temperature (<200 °C) is an interesting topic, and only several noble metal catalysts were reported to achieve this goal. Currently, design of cheap metal catalysts that can effectively accelerate this reaction at low temperature is still a challenge. In this work, we found that the amorphous Co–Zr0.1–B–O catalyst could catalyze the reaction at above 140 °C. The activity of the catalyst at 180 °C reached 10.7 mmolCO2 gcat−1 h−1, which is comparable to or even higher than that of some noble metal catalysts under similar conditions. The Zr promoter in this work had the highest promoting factor to date among the catalysts for CO2 methanation. As far as we know, this is the first report of an amorphous transition metal catalyst that could effectively accelerate CO2 methanation. The outstanding performance of the catalyst could be ascribed to two aspects. The amorphous nature of the catalyst offered abundant surface defects and intrinsic active sites. On the other hand, the Zr promoter could enlarge the surface area of the catalyst, enrich the Co atoms on the catalyst surface, and tune the valence state of the atoms at the catalyst surface. The reaction mechanism was proposed based on the control experiments.

It is discovered that an amorphous transition metal catalyst Co–Zr0.1–B–O could effectively accelerate CO2 methanation, at a rate that is comparable to or even higher than that of some noble metal catalysts under similar conditions.  相似文献   

7.
It is highly desired to achieve controllable product selectivity in CO2 hydrogenation. Herein, we report light-induced switching of reaction pathways of CO2 hydrogenation towards CH3OH production over actomically dispersed Co decorated Pt@UiO-66-NH2. CO, being the main product in the reverse water gas shift (RWGS) pathway under thermocatalysis condition, is switched to CH3OH via the formate pathway with the assistance of light irradiation. Impressively, the space-time yield of CH3OH in photo-assisted thermocatalysis (1916.3 μmol gcat−1 h−1) is about 7.8 times higher than that without light at 240 °C and 1.5 MPa. Mechanism investigation indicates that upon light irradiation, excited UiO-66-NH2 can transfer electrons to Pt nanoparticles and Co sites, which can efficiently catalyze the critical elementary steps (i.e., CO2-to-*HCOO conversion), thus suppressing the RWGS pathway to achieve a high CH3OH selectivity.  相似文献   

8.
The synthesis of hydrocarbons from hydrogenation of carbon dioxide has been studied on a series of coprecipitated iron-manganese catalysts. Kinetic measurements, X-ray diffraction, Mössbauer spectroscopy, and temperature-programmed reaction of adsorbed species were used for activity tests and catalyst characterizations. The results showed that the yields of low-carbon olefins decrease, whereas the amount of methane increases with increasing manganese content in catalysts. The conversion to hydrocarbons is suppressed by the reverse water-gas shift (RWGS) reaction equilibrium. Mössbauer spectra and XRD patterns of catalysts after reaction indicate that catalysts are severely oxidized; it is speculated that the olefin producing surface structure in CO hydrogenation may be destroyed by this oxidation. A pulse-reactor study of the Boudouard reaction showed that manganese has the effect of suppressing CO dissociation and thus decreasing carbon content on catalysts. For CO2 hydrogenation, the affinity to carbon on catalysts is important; therefore manganese is not a good promoter. Among all catalysts tested, pure iron has the best selectivity to olefinic and long-chain hydrocarbons.  相似文献   

9.
Cobalt-based catalysts are well-known to convert syngas into a variety of Fischer–Tropsch (FTS) products depending on the various reaction parameters, in particular particle size. In contrast, the reactivity of these particles has been much less investigated in the context of CO2 hydrogenation. In that context, Surface organometallic chemistry (SOMC) was employed to synthesize highly dispersed cobalt nanoparticles (Co-NPs) with particle sizes ranging from 1.6 to 3.0 nm. These SOMC-derived Co-NPs display significantly different catalytic performances under CO2 hydrogenation conditions: while the smallest cobalt nanoparticles (1.6 nm) catalyze mainly the reverse water-gas shift (rWGS) reaction, the larger nanoparticles (2.1–3.0 nm) favor the expected methanation activity. Operando X-ray absorption spectroscopy shows that the smaller cobalt particles are fully oxidized under CO2 hydrogenation conditions, while the larger ones remain mostly metallic, paralleling the observed difference of catalytic performances. This fundamental shift of selectivity, away from methanation to reverse water-gas shift for the smaller nanoparticles is noteworthy and correlates with the formation of CoO under CO2 hydrogenation conditions.  相似文献   

10.
Catalytic conversion of CO2 to long-chain hydrocarbons with high activity and selectivity is appealing but hugely challenging. For conventional bifunctional catalysts with zeolite, poor coordination among catalytic activity, CO selectivity and target product selectivity often limit the long-chain hydrocarbon yield. Herein, we constructed a singly cobalt-modified iron-based catalyst achieving 57.8% C5+ selectivity at a CO2 conversion of 50.2%. The C5+ yield reaches 26.7%, which is a record-breaking value. Co promotes the reduction and strengthens the interaction between raw CO2 molecules and iron species. In addition to the carbide mechanism path, the existence of Co3Fe7 sites can also provide sufficient O-containing intermediate species (CO*, HCOO*, CO32*, and ) for subsequent chain propagation reaction via the oxygenate mechanism path. Reinforced cascade reactions between the reverse water gas shift (RWGS) reaction and chain propagation are achieved. The improved catalytic performance indicates that the KZFe–5.0Co catalyst could be an ideal candidate for industrial CO2 hydrogenation catalysts in the future.

CO2/H2 mixtures can be directly converted into long-chain hydrocarbons with a yield of 26.7% over a bimetallic FeCo catalyst via strengthening the reinforced chain growth reaction.  相似文献   

11.
In the context of an increased interest in the abatement of CO2 emissions generated by industrial activities, CO2 hydrogenation processes show an important potential to be used for the production of valuable compounds (methane, methanol, formic acid, light olefins, aromatics, syngas and/or synthetic fuels), with important benefits for the decarbonization of the energy sector. However, in order to increase the efficiency of the CO2 hydrogenation processes, the selection of active and selective catalysts is of utmost importance. In this context, the interest in graphene-based materials as catalysts for CO2 hydrogenation has significantly increased in the last years. The aim of the present paper is to review and discuss the results published until now on graphene-based materials (graphene oxide, reduced graphene oxide, or N-dopped graphenes) used as metal-free catalysts or as catalytic support for the thermocatalytic hydrogenation of CO2. The reactions discussed in this paper are CO2 methanation, CO2 hydrogenation to methanol, CO2 transformation into formic acid, CO2 hydrogenation to high hydrocarbons, and syngas production from CO2. The discussions will focus on the effect of the support on the catalytic process, the involvement of the graphene-based support in the reaction mechanism, or the explanation of the graphene intervention in the hydrogenation process. Most of the papers emphasized the graphene’s role in dispersing and stabilizing the metal and/or oxide nanoparticles or in preventing the metal oxidation, but further investigations are needed to elucidate the actual role of graphenes and to propose reaction mechanisms.  相似文献   

12.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu(111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的 Cu 原子的电子云密度,使 CO2分子在含 Ge 活性界面上的吸附能力显著增强:CO2在 Ge-Cu(111)晶面上的吸附能约为Cu(111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近 20 kJ·mol-1,同时衍生出 3条生成甲醇的 RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   

13.
Formate and CO are competing products in the two-electron CO2 reduction reaction (2e CO2RR), and they are produced via *OCHO and *COOH intermediates, respectively. However, the factors governing CO/formate selectivity remain elusive, especially for metal–carbon–nitrogen (M–N–C) single-atom catalysts (SACs), most of which produce CO as their main product. Herein, we show computationally that the selectivity of M–N–C SACs is intrinsically associated with the CO2 adsorption mode by using bismuth (Bi) nanosheets and the Bi–N–C SAC as model catalysts. According to our results, the Bi–N–C SAC exhibits a strong thermodynamic preference toward *OCHO, but under working potentials, CO2 is preferentially chemisorbed first due to a charge accumulation effect, and subsequent protonation of chemisorbed CO2 to *COOH is kinetically much more favorable than formation of *OCHO. Consequently, the Bi–N–C SAC preferentially produces CO rather than formate. In contrast, the physisorption preference of CO2 on Bi nanosheets contributes to high formate selectivity. Remarkably, this CO2 adsorption-based mechanism also applies to other typical M–N–C SACs. This work not only resolves a long-standing puzzle in M–N–C SACs, but also presents simple, solid criteria (i.e., CO2 adsorption modes) for indicating CO/formate selectivity, which help strategic development of high-performance CO2RR catalysts.

This report discloses a nontrivial role of the CO2 adsorption mode in governing the CO/formate selectivity of single-atom catalysts towards two-electron CO2 reduction.  相似文献   

14.
Ruthenium nanoparticles (NPs) immobilized on an amine-functionalized polymer-grafted silica support act as adaptive catalysts for the hydrogenation of bicyclic heteroaromatics. Whereas full hydrogenation of benzofuran and quinoline derivatives is achieved under pure H2, introducing CO2 into the H2 gas phase leads to an effective shutdown of the arene hydrogenation while preserving the activity for the hydrogenation of the heteroaromatic part. The selectivity switch originates from the generation of ammonium formate species on the surface of the materials by catalytic hydrogenation of CO2. The CO2 hydrogenation is fully reversible, resulting in a robust and rapid switch between the two states of the catalyst adapting its performance in response to the feed gas composition. A variety of benzofuran and quinoline derivatives were hydrogenated to fully or partially saturated products in high selectivity and yields simply by altering the composition of the feed gas from H2 to H2/CO2. The adaptive catalytic system thus provides controlled access to valuable products using a single catalyst rather than two specific and distinct catalysts with static reactivity.  相似文献   

15.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu (111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的Cu原子的电子云密度,使CO2分子在含Ge活性界面上的吸附能力显著增强:CO2在Ge-Cu(111)晶面上的吸附能约为Cu (111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近20 kJ·mol-1,同时衍生出3条生成甲醇的RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   

16.
Synthesis of formate from hydrogenation of carbon dioxide (CO2) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h−1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.  相似文献   

17.
《中国化学快报》2022,33(5):2590-2594
Reverse water gas shift (RWGS) reaction is a crucial process in CO2 utilization. Herein, Ni- and NiCe-containing hexagonal mesoporous silica (Ni-HMS and NiCe-HMS) catalysts were synthesized using an in-situ one-pot method and applied for RWGS reaction. At certain reaction temperatures 500-750 °C, Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst. This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst. NiCe-HMS exhibited higher activity compared to Ni-HMS. The catalysts were characterized by means of TEM, XPS, XRD, H2-TPR, CO2-TPD, EPR and N2 adsorption-desortion technology. It was found that introduction of Ce created high concentration of oxygen vacancies, served as the active site for activating CO2. Also, this work analyzed the effect of the H2/CO2 molar ratio on the best NiCe-HMS. When reaction gas H2/CO2 molar ratio was 4 significantly decreased the selectivity to CO at low temperature, but triggered a higher CO2 conversion which is close to the equilibrium.  相似文献   

18.
By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2, ZrO2, and TiO2), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O‐bound and O‐bound species at the PtCo–oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine‐tuned.  相似文献   

19.
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4, but selective and efficient synthesis of higher alcohols (C2+OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+OH from CO2 hydrogenation over K-modified Ni−Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni−Zn carbide (K-Ni3Zn1C0.7) by carburization of Zn-incorporated Ni0, which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C−C coupling to C2+OH rather than conventional CH4. This work opens a new catalytic avenue toward CO2 hydrogenation to C2+OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.  相似文献   

20.
Identification of the active structure under reaction conditions is of great importance for the rational design of heterogeneous catalysts. However, this is often hampered by their structural complexity. The interplay between the surface structure of Co3O4 and the CO2 hydrogenation is described. Co3O4 with morphology‐dependent crystallographic surfaces presents different reducibility and formation energy of oxygen vacancies, thus resulting in distinct steady‐state composition and product selectivity. Co3O4‐0 h rhombic dodecahedra were completely reduced to Co0 and CoO, which presents circa 85 % CH4 selectivity. In contrast, Co3O4‐2 h nanorods were partially reduced to CoO, which exhibits a circa 95 % CO selectivity. The crucial role of the Co3O4 structure in determining the catalytic performance for higher alcohol synthesis over CuCo‐based catalysts is demonstrated. As expected, Cu/Co3O4‐2 h shows nine‐fold higher ethanol yield than Cu/Co3O4‐0 h owing to the inhibition for methanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号