首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dansyl-anthracene dyads 1 and 2 in CH(3)CN-H(2)O (7:3) selectively recognize Cu(2+) ions amongst alkali, alkaline earth and other heavy metal ions using both absorbance and fluorescence spectroscopy. In absorbance, the addition of Cu(2+) to the solution of dyads 1 or 2 results in appearance of broad absorption band from 200 nm to 725 nm for dyad 1 and from 200 nm to 520 nm for dyad 2. This is associated with color change from colorless to blue (for 1) and fluorescent green (for 2). This bathochromic shift of the spectrum could be assigned to internal charge transfer from sulfonamide nitrogen to anthracene moiety. In fluorescence, under similar conditions dyads 1 and 2 on addition of Cu(2+) selectively quench fluorescence due to dansyl moiety between 520-570 nm (for 1)/555-650 nm (for 2) with simultaneous fluorescence enhancement at 470 nm and 505 nm for dyads 1 and 2, respectively. Hence these dyads provide opportunity for ratiometric analysis of 1-50 μM Cu(2+). The other metal ions viz. Fe(3+), Co(2+), Ni(2+), Cd(2+), Zn(2+), Hg(2+), Ag(+), Pb(2+), Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+) do not interfere in the estimation of Cu(2+) except Cr(3+) in case of dyad 1. The coordination of dimethylamino group of dansyl unit with Cu(2+) causes quenching of fluorescence due to dansyl moiety between 520-600 nm and also restricts the photoinduced electron transfer from dimethylamino to anthracene moiety to release fluorescence between 450-510 nm. This simultaneous quenching and release of fluorescence respectively due to dansyl and anthracene moieties emulates into Cu(2+) induced ratiometric change.  相似文献   

2.
Dhir A  Bhalla V  Kumar M 《Organic letters》2008,10(21):4891-4894
A new fluorescent chemosensor based on the calix[4]arene of partial cone conformation possessing a dansyl moiety has been synthesized. The chemosensor demonstrates selective optical recognition of Hg(2+) and Cu(2+) in two contrasting modes. The receptor exhibited ratiometric sensing of Hg(2+) and "ON-OFF" type of fluorescence behavior in the presence of Cu(2+). The compound behaves as a fluorescent molecular switch upon chemical inputs of Hg(2+) and Cu(2+) ions.  相似文献   

3.
A new fluorescent peptidyl chemosensor based on the mercury binding MerP protein with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl (acceptor), contains amino acids from MerP's metal binding loop (sequence: dansyl-Gly-Gly-Thr-Leu-Ala-Val-Pro-Gly-Met-Thr-Cys-Ala-Ala-Cys-Pro-Ile-Thr-Val-Lys-Lys-Gly-Gly-Trp-CONH(2)). A FRET enhancement or 'turn-on' response was observed for Hg(2+) as well as for Zn(2+), Cd(2+) and Ag(+) in a pure aqueous solution at pH 7.0. The emission intensity of the acceptor was used to monitor the concentration of these metals ions with detection limits of 280, 6, 103 and 496 microg L(-1), respectively. No response was observed for the other transition, alkali and alkaline earth metals tested. The fluorescent enhancement observed is unique for Hg(2+) since this metal generally quenches fluorescence. The acceptor fluorescence increase resulting from metal binding-induced FRET suggests a sensor that is inherently more sensitive than one based on quenching by the binding event.  相似文献   

4.
A saccharide cyclophane bearing an environment-sensitive fluorophore (1) was prepared by introducing not only three branches with a terminal galactose residue but also one with a dansyl moiety into a tetraaza[6.1.6.1]paracyclophane skeleton. Self-association behavior of the dansyl-appended saccharide cyclophane was characterized in aqueous media by fluorescence spectroscopy and dynamic light scattering measurements. At least in the concentrations below 1.0 x 10(-5) M, saccharide cyclophane 1 existed in a monomeric state, whereas it tended to form self-aggregated complexes in the higher concentration. Solvent polarity dependency on the emission spectra of 1 was examined by fluorescence spectroscopy. With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 1 increased along with a concomitant blue shift of the fluorescence maximum (lambda(em)). In the monomeric state of 1 in water, the dansyl moiety of 1 was not fully included into its cyclophane cavity but partially exposed to the bulk aqueous phase. In the higher concentration ranges in an aggregate state, however, the dansyl group of 1 was located in the apolar cyclophane cavity whose microenvironment was equivalent to the polarity of 1-butanol evaluated on the basis of a correlation between lambda(em) and solvent polarity. This indicates an intermolecular inclusion of the dansyl moiety within the cyclophane. When cyclodextrin (CD) was mixed with 1, the dansyl group of 1 was bound to an internal cavity of CD such as gamma-CD, beta-CD, 6-O-alpha-glucosyl-beta-CD, and 6-O-alpha-maltosyl-beta-CD with binding constants of 7.5 x 10(2), 7.8 x 10(2), 7.7 x 10(2), and 6.0 x 10(2) M(-1), respectively. Such a supramolecular assembling of dansyl-modified cyclophane 1 and CDs caused changes of the fluorescence spectra as well as appearance of induced CD bands in aqueous media. Furthermore, saccharide cyclophane 1 was selectively bound to peanut agglutinin (PNA), galactoside-binding lectin, which was readily monitored by a visible turbidity of the solution due to a cross-linking agglutination of these components, as well as by fluorescence spectroscopy.  相似文献   

5.
The dansyl-modified dimer 9 complexes strongly with the steroidal bile salts. Relative to native beta-cyclodextrin, the binding of cholate (1a) and deoxycholate (1b) salts is especially enhanced. These steroids bind exclusively in a 1:1 fashion. For other bile salts (1c-1e) both 1:1 and 1:2 complexes were observed with stabilities similar to those of native beta-cyclodextrin. This indicates that only one cavity is used, with a small contribution from the second. The difference is attributed to the absence of a 12-hydroxy group in the second group of steroids. Comparison with a dimer that lacks the dansyl moiety (6) shows that this group especially hinders the cooperative binding of la and 1b. The smaller interference in the binding of the other steroids indicates that self-inclusion of the dansyl moiety hardly occurs. This weak self-inclusion is supported by fluorescence studies. The dansyl fluorescence of dimer 9 is less blue-shifted than that of other known dansyl-appended cyclodextrin derivatives; this is indicative of a more polar micro-environment. Addition of guests causes a change in fluorescence intensity.  相似文献   

6.
A cyclophane-based resorcinarene trimer (3) bearing a dansyl moiety as an environmentally sensitive fluorophore was prepared by stepwise condensation of a tetraaza[6.1.6.1]paracyclophane skeleton with a dansyl moiety and three resorcinarene derivatives having heptacarboxylic acid residues in this sequence. The dansyl-appended cyclophane exhibited the following fluorescence properties regarding solvent polarity dependency and histone surface recognition: With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 3 increased along with a concomitant blue shift of the fluorescence maximum (lambdaem). The microenvironmentally sensitive fluorescence properties of dansyl fluorophore were maintained, even when the dansyl moiety was covalently attached to a cyclophane. Most interestingly, the cyclophane-based resorcinarene trimer exhibited recognition and fluorescence sensing capabilities toward histone, a small basic protein of eukaryotic chromatins. The fluorescence intensity originating from 3 increased along with a concomitant blue shift of lambdaem upon the addition of histone, reflecting the formation of 3-histone complexes. A relatively large fluorescence polarization (P) value was obtained for the 3-histone complexes (0.15), reflecting highly restricted conformations of 3, and the obtained P value was much larger than that of 3 alone in aqueous medium (0.07). The binding constant (K) of 3 with histone (unit basis) was estimated to be 2.1 x 106 M-1. On the other hand, upon the addition of acetylated histone (Ac-histone) to an aqueous solution containing 3, the extent of change in fluorescence intensity originating from the dansyl group of 3 was almost negligible, indicating that the electrostatic interactions between 3 and Ac-histone were weak. In addition, the fluorescence spectral changes were also small or negligible upon the addition of other proteins such as albumin, ovalbumin, peanut agglutinin, myoglobin, concanavalin A, cytochrome c, and lysozyme, having isoelectric points of 4.7, 4.8, 5.7-6.7, 6.8, 7.1, 9, and 11.0, respectively, to an aqueous solution containing 3.  相似文献   

7.
Warmke H  Wiczk W  Ossowski T 《Talanta》2000,52(3):449-456
The influence of metal cations Li(+), Na(+), K(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+) and Al(3+) on the spectroscopic properties of the dansyl (1-dimethylaminonaphthalene-5-sulfonyl) group covalently linked to monoaza crown ethers 1-aza-15-crown-5 (1,4,7,10,-tetraoxa-13-azacyclopentadecane) (A15C5) and 1-aza-crown-6 (1,4,7,10,13-pentaoxa-16-azacyclooctadecane) (A18C6) was investigated by means of absorption and emission spectrophotometry. Interaction of the alkali metal ions with both fluoroionophores is weak, while alkaline earth metal ions interact strongly causing 50 and 85% quenching of dansyl fluorescence of N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,-tetraoxa-13-azacyclopentadecane (A15C5-Dns) and N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (A18C6-Dns), respectively. The Cu(2+), Pb(2+) and Al(3+) cations interact very strongly with dansyl chromophore, causing a major change in absorption spectrum of the chromophore and forming non-fluorescent complexes. The Co(2+), Ni(2+), Zn(2+), Mg(2+) cations interact moderately with both fluoroionophores causing quenching of dansyl fluorescence by several percent only.  相似文献   

8.
Zinc porphyrin-naphthalenediimide (ZnP-NIm) dyads and zinc porphyrin-pyromellitdiimide-naphthalenediimide (ZnP-Im-NIm) triad have been employed to examine the effects of metal ions on photoinduced charge-separation (CS) and charge-recombination (CR) processes in the presence of metal ions (scandium triflate (Sc(OTf)(3)) or lutetium triflate (Lu(OTf)(3)), both of which can bind with the radical anion of NIm). Formation of the charge-separated states in the absence and in the presence of Sc(3+) was confirmed by the appearance of absorption bands due to ZnP(.) (+) and NIm(.) (-) in the absence of metal ions and of those due to ZnP(.) (+) and the NIm(.) (-)/Sc(3+) complex in the presence of Sc(3+) in the time-resolved transient absorption spectra of dyads and triad. The lifetimes of the charge-separated states in the presence of 1.0 x 10(-3) M Sc(3+) (14 micros for ZnP-NIm, 8.3 micros for ZnP-Im-NIm) are more than ten times longer than those in the absence of metal ions (1.3 micros for ZnP-NIm, 0.33 micros for ZnP-Im-NIm). In contrast, the rate constants of the CS step determined by the fluorescence lifetime measurements are the same, irrespective of the presence or absence of metal ions. This indicates that photoinduced electron transfer from (1)ZnP(*) to NIm in the presence of Sc(3+) occurs without involvement of the metal ion to produce ZnP(.) (+)-NIm(.) (-), followed by complexation with Sc(3+) to afford the ZnP(.) (+)-NIm(.) (-)/Sc(3+) complex. The one-electron reduction potential (E(red)) of the NIm moiety in the presence of a metal ion is shifted in a positive direction with increasing metal ion concentration, obeying the Nernst equation, whereas the one-electron oxidation potential of the ZnP moiety remains the same. The driving force dependence of the observed rate constants (k(ET)) of CS and CR processes in the absence and in the presence of metal ions is well evaluated in terms of the Marcus theory of electron transfer. In the presence of metal ions, the driving force of the CS process is the same as that in the absence of metal ions, whereas the driving force of the CR process decreases with increasing metal ion concentration. The reorganization energy of the CR process also decreases with increasing metal ion concentration, when the CR rate constant becomes independent of the metal ion concentration.  相似文献   

9.
A series of fluorophore-labeled S-nitrosothiols were synthesized, and their fluorescence enhancements upon removal of the nitroso (NO) group were evaluated either by transnitrosation or by photolysis. It was shown that, with a suitable alkyl linker, the fluorescence intensity of dansyl-labeled S-nitrosothiols could be enhanced up to 30-fold. The observed fluorescence enhancement was attributed to the intramolecular energy transfer from fluorophore to the SNO moiety. Ab initio density functional theory (DFT) calculations indicated that the "overlap" between the SNO moiety and the dansyl ring is favored because of their stabilizing interaction, which was in turn affected by both the length of the alkyl linker and the rigidity of the sulfonamide unit. In addition, one of the dansyl-labeled S-nitrosothiols was used to explore the kinetics of S-nitrosothiol/thiol transnitrosation and was evaluated as a fluorescence probe of S-nitrosothiol-bound NO transfer in human umbilical vein endothelial cells.  相似文献   

10.
A highly efficient photocatalytic hydrogen evolution system without an electron mediator such as methyl viologen (MV(2+)) has been constructed using 9-mesityl-10-methylacridinium ion (Acr(+)-Mes), poly(N-vinyl-2-pyrrolidone)-protected platinum nanoclusters (Pt-PVP) and NADH (beta-nicotinamide adenine dinucleotide, reduced form) as the photocatalyst, hydrogen evolution catalyst and electron donor, respectively. The photocatalyst (Acr(+)-Mes) undergoes photoinduced electron transfer (ET) from the Mes moiety to the singlet excited state of the Acr(+) moiety to produce an extremely long-lived ET state, which is capable of oxidizing NADH and reducing Pt-PVP, leading to efficient hydrogen evolution. The hydrogen evolution efficiency is 300 times higher than that in the presence of MV(2+) because of the much faster reduction rate of Pt-PVP by Acr(*)-Mes compared with that by MV(*+). When the electron donor (NADH) is replaced by ethanol in the presence of an alcohol dehydrogenase (ADH), NADH is regenerated during the photocatalytic hydrogen evolution.  相似文献   

11.
A boradiazaindacene (BODIPY) derivative containing a simple NO bidentate ligand shows a Cu(2+)-selective fluorescence in aqueous media. This is promoted via a coordination of Cu(2+) followed by oxidative dehydrogenation of an amine moiety, leading to a formation of a fluorescent Cu(+)-Schiff base complex.  相似文献   

12.
We have investigated the complexation of the luminescent Nd(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+), and Yb(3+) ions by a polylysin dendrimer containing 21 amide groups in the interior and, in the periphery, 24 chromophoric dansyl units which show an intense fluorescence band in the visible region. Most of the experiments were performed in 5:1 acetonitrile/dichloromethane solution at 298 K. On addition of the lanthanide ions to dendrimer solutions, the fluorescence of the dansyl units is quenched; in Nd(3+), Er(3+), and Yb(3+), a sensitized near-infrared emission of the lanthanide ion is observed. At low metal ion concentrations, each dendrimer hosts only one metal ion and when the hosted metal ion is Nd(3+) or Eu(3+), the fluorescence of all the 24 dansyl units of the dendrimer is quenched with unitary efficiency. Quantitative measurements were performed in a variety of experimental conditions, including protonation of the dansyl units and measurements in rigid matrix at 77 K where a sensitized Eu(3+) emission could also be observed. The results obtained have been interpreted on the basis of the energy levels and redox potentials of dendrimer and metal ions.  相似文献   

13.
New thiacalix[4]crown derivatives 4 and 5 of 1,3-alternate conformation possessing anthracene and quinoline moieties respectively were synthesised and examined for their cation recognition abilities toward different cations by fluorescence spectroscopy. Selective optical recognition with fluorescence amplification was observed for Fe(3+)/K(+) and Hg(2+)/K(+) in chemosensors 4 and 5 respectively. Further it was observed that the formation of 4·Fe(3+) complex triggers the decomplexation of K(+) ion. Similar allosteric behaviour between Hg(2+) and K(+) was observed in chemosensor 5.  相似文献   

14.
4-Acetyl-N,N-diisopropyl-1-benzylnicotinamidinium ion (ABNA(+)) and 1-benzyl-4-phenylnicotinamidinium ion (PhBNA(+)) were newly synthesized as NAD(+) analogues to examine the electron-transfer reactivity and the effects of metal ions on the reactivity in comparison with those of 1-benzylnicotinamidinium ion (BNA(+)) and 1-methyl-4-phenylpyridinium ion (MPP(+)) which has no amide or acetyl group. A remarkable positive shift in the one-electron reduction potential of ABNA(+) was observed in the presence of Sc(3+) which forms a 1:1 complex with ABNA(+) through both acetyl and amide groups, whereas no such shift in the presence of Sc(3+) was observed for the one-electron reduction of MPP(+) which has no acetyl or amide group. Similar but less positive shifts in the one-electron reduction potentials were observed in the presence of Sc(3+) for the one-electron reduction of BNA(+) and PhBNA(+) both of which have only one amide group. The rate of electron-transfer reduction of ABNA(+) is enhanced significantly by the complexation with Sc(3+) to produce stable ABNA(*)-Sc(3+) complex which has been successfully detected by ESR. The electron self-exchange rates of the MPP(*)/MPP(+) system have been determined from the ESR line width variation and are compared with those of the ABNA(*)/ABNA(+) system.  相似文献   

15.
A cyclen (=1,4,7,10-tetraazacyclododecane) doubly functionalized with three carbamoylmethyl groups and one dansylaminoethyl (dansyl = 2-(5-(dimethylamino)-1-naphthalenesulfonyl) group (L(2) = 1-(2-(5-(dimethylamino)-1-naphthalenesulfonylamido)ethyl)-4,7,10-tris(carbamoylmethyl)-cyclen) was synthesized and characterized. Potentiometrtic pH titration and UV spectrophotometric titration of L(2) served to determine deprotonation of the pendant dansylamide (L(2) --> H(-1)L(2)) with a pK(a) value of 10.6, while the fluorometric titration disclosed a pK(a) value of 8.8 +/- 0.2, which was assigned to the dansyl deprotonation in the excited state. The 1:1 M(3+)-H(-1)L(2) complexation constants (log K(app) = 6.0 for Y(3+) and 5.2 for La(3+), where K(app)(M-H(-1)L(2)) = [M(3+)-H(-1)L(2)]/[M(3+)](free)[L(2)](free) (M(-1)) at pH 7.4) were determined by potentiometric pH titration and UV and fluorescence spectrophotometric titrations (excitation at 335 nm and emission at 520 nm) in aqueous solution (with I = 0.1 (NaNO(3))) and 25 degrees C. The X-ray structure analysis of the Y(3+)-H(-1)L complex showed nine-coordinated Y(3+) with four nitrogens of cyclen, three carbamoyl oxygens, and the deprotonated nitrogen and a sulfonyl oxygen of the dansylamide. The crystal data are as follow: formula C(28)H(49)N(11)O(13.5)SY (Y(3+)-H(-1)L(2) x 2(NO(3)(-)) x 2.5H(2)O), M(r) = 876.73, monoclinic, space group P2(1)/n (No. 14), a = 18.912(3) A, b = 17.042(3) A, c = 24.318(4) A, beta = 95.99(1) degrees, V = 7794(2) A(3), Z = 8, R1 = 0.099. Upon M(3+)-H(-1)L(2) complexation, the dansyl fluorescence greatly increased (8.6 and 3.8 times for Y(3+) and La(3+), respectively) in aqueous solution at pH 7.4. Other lanthanide ions also yielded Ln(3+)-H(-1)L(2) complexes with similar K(app) values, although all the dansyl fluorescences were weakly quenched. On the other hand, zinc(II) formed only a 1:1 Zn(2+)-L(2) complex at neutral pH with negligible fluorescence change. The X-ray crystal structure of the Zn(2+)-L(2) complex confirmed the pendant dansylamide being noncoordinating. The crystal data are as follow: formula C(28)H(51)N(11)O(14)SZn (Zn(2+)-L(2) x 2(NO(3)(-)) x 3H(2)O), M(r) = 863.22, monoclinic, space group C2/n (No. 15), a = 35.361(1) A, b = 13.7298(5) A, c = 18.5998(6) A, beta = 119.073(2) degrees, V = 7892.3(5) A(3), Z = 8, R1 = 0.084. Other divalent metal ions did not interact with L(2) at all (e.g., Mg(2+) and Ca(2+)) or interacted with L(2) with the dansyl fluorescence quenched (e.g., Cu(2+)).  相似文献   

16.
The Zn(2+) coordination chemistry and luminescent behavior of two ligands constituted by an open 1,4,7-triazaheptane chain functionalized at both ends with 2-picolyl units and either a methylnaphthyl (L1) or a dansyl (L2) fluorescent unit attached to the central amino nitrogen are reported. The fluorescent properties of the ZnL1(2+) and ZnL2(2+) complexes are then exploited toward detection of anions. L1 in the pH range of study has four protonation constants. The fluorescence emission from the naphthalene fluorophore is quenched either at low or at high pH values leading to an emissive pH window centered around pH = 5. In contrast, in L2 the fluorescence emission from the dansyl unit occurs only at basic pH values. In the case of L1, a red-shifted band appearing in the visible region was assigned to an exciplex emission involving the naphthalene and the tertiary amine of the polyamine chain. L1 forms Zn(2+) mononuclear complexes of ZnH(p)L1((p+2)+) stoichiometry with p = 1, 0, -1. Formation of the ZnL1(2+)species produces a strong enhancement of the L1 luminescence leading to an extended emissive pH window from pH = 5 to pH = 9. Addition of several anions to this last complex leads to a partial quenching effect. On the contrary, the fluorescence emission of L2 is partially quenched upon complexation with Zn(2+) in the same pH window (5 < pH < 9). The lower stability of ZnL2(2+) with respect to ZnL1(2+) suggests a lack of involvement of the sulfonamide group in the first coordination sphere. However, there is spectral evidence for an interesting photoinduced binding of the sulfonamide nitrogen to Zn(2+). While addition of diphosphate, triphosphate, citrate, and D,L-isocitrate to a solution of ZnL2(2+) restores the fluorescence emission of the system (lambda max ca. 600 nm), addition of phosphate, chloride, iodide, and cyanurate do not produce any significant change in fluorescence. Moreover, this system would permit one to differentiate diphosphate and triphosphate over citrate and d, l-isocitrate because the fluorescence enhancement observed upon addition of the first anions is much sharper. The ZnL2(2+) complex and its mixed complexes with diphosphate, triphosphate, citrate, and D,L-isocitrate have been characterized by (1)H, (31)P NMR, and Electrospray Mass Spectrometry.  相似文献   

17.
Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad and a bis(zinc phthalocyanine)-perylenediimide [(ZnPc) 2-PDI] triad results in formation of the triplet excited state of the PDI moiety without the fluorescence emission, whereas addition of Mg (2+) ions to the dyad and triad results in formation of long-lived charge-separated (CS) states (ZnPc (*+)-PDI (*-)/Mg (2+) and (ZnPc) 2 (*+)-PDI (*-)/Mg (2+)) in which PDI (*-) forms a complex with Mg (2+). Formation of the CS states in the presence of Mg (2+) was confirmed by appearance of the absorption bands due to ZnPc (*+) and PDI (*-)/Mg (2+) complex in the time-resolved transient absorption spectra of the dyad and triad. The one-electron reduction potential ( E red) of the PDI moiety in the presence of a metal ion is shifted to a positive direction due to the binding of Mg (2+) to PDI (*-), whereas the one-electron oxidation potential of the ZnPc moiety remains the same. The binding of Mg (2+) to PDI (*-) was confirmed by the ESR spectrum, which is different from that of PDI (*-) without Mg (2+). The energy of the CS state (ZnPc (*+)-PDI (*-)/Mg (2+)) is determined to be 0.79 eV, which becomes lower that of the triplet excited state (ZnPc- (3)PDI*: 1.07 eV). This is the reason why the long-lived CS states were attained in the presence of Mg (2+) instead of the triplet excited state of the PDI moiety.  相似文献   

18.
Ratiometric sensors for the detection of metal ions have gained increasing attention due to its self-calibration tendency for the environmental effects. In this context, we have synthesized and characterized a dual emitting ratiometric Zn(2+) probe (1) having acridinedione as a fluorophore and N,N-bis(2-pyridylmethyl)amine (BPA) as a receptor unit. Existence of two different conformation of the molecule with photoinduced electron transfer (PET) from amine moiety to the acridinedione fluorophore leads to dual emission, namely locally excited (425 nm) and anomalous charge transfer emission (560 nm) in aprotic solvents. In the presence of one equivalent of Zn(2+), a 15-fold fluorescence enhancement in the locally excited state together with the quenching of charge transfer emission is observed. The intensity changes at the two emission peaks allow a ratiometric detection of Zn(2+) under PET signaling mechanism. The utilization of PET process for the ratiometric fluorescence change will further signify the importance of PET mechanism in sensing action. Addition of Zn(2+) to 1 in acetonitrile/water mixtures shows a single emission peak with fluorescence enhancement.  相似文献   

19.
A new maltoheptaose derivative was prepared as a useful substrate for continual assay of alpha-amylase. The maltoheptaoside has thionaphtyl group as a fluorescent energy donor at the reducing end and dansyl group as an acceptor group at the non-reducing end. Excitation of the thionaphthyl group at 290 nm results in emission at 523 nm from the dansyl group, while the emission from the thionaphthyl group is quenched by the dansyl group. This fluorescence energy transfer is reduced by the hydrolytic action with alpha-amylase and a significant decrease in the dansyl emission concomitant with an increase in the thionaphthyl emission was observed. Usefulness of this substrate was demonstrated for sensitive and continuous assay of alpha-amylase from Aspergillus oryzae.  相似文献   

20.
A series of amide-based molecular knots equipped selectively with fluorescent dansyl and/or pyrenesulfonyl moieties were synthesized from the readily available tris(allyloxy)knotane. UV/Vis absorption spectra, emission spectra, and the emission lifetimes of the fluorescent knotanes were investigated in chloroform at 298 K. The absorption spectra of the knotanes correspond to those of mixtures of their UV-active constituents. The fluorescence quantum yields and lifetimes of the dansyl and pyrenesulfonyl moieties are partly quenched by the knotane platform. In the KN(Da)(2)(Py) species, the fluorescent excited state of the dansyl units (lambda(max)=510 nm) lies at lower energy than the fluorescent excited state of the pyrenesulfonyl unit (lambda(max)=385 nm), the emission of which is accordingly quenched with sensitization of the dansyl fluorescence. In the KN(Ao)(2)(Da), KN(Ao)(Da)(2), and KN(Da)(3) species, the addition of acids causes the protonation of their dansyl units with a consequent decrease in the intensity of the dansyl band at 510 nm and appearance of the emission band of the protonated dansyl unit (lambda(max)=340 nm). Each dansyl unit of KN(Ao)(Da)(2) and KN(Da)(3) undergoes the independent protonation. In these incompletely protonated knotanes the fluorescence of the protonated dansyl units is partly quenched by nonprotonated ones. These processes can be quantitatively reversed upon addition of a base. In KN(Da)(2)(Py), an increase of the fluorescence of its pyrenesulfonyl group is observed when the dansyl groups are protonated. The results obtained show that the readily available and easily functionalizable amide-knotanes can be used as an interesting scaffold to obtain fluorescent switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号