首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of dodecyltrimethylammonium bromide (DoTab) to cross-linked methacrylic acid-ethyl acrylate (MAA-EA) copolymers with various MAA/EA molar ratios at different degrees of neutralization (alpha) was quantitatively studied using isothermal titration calorimetry, dynamic light scattering, surfactant selective electrode, and electrophoresis techniques. The surfactant binds to the polymers at all degrees of neutralization, but via different mechanisms. When alpha is sufficiently high, the binding is primarily electrostatic interaction between the surfactant and ionized polymer chains, which is reinforced by the micellization of electrostatically bound surfactant molecules. The saturation takes place at charge ratio ([DoTa(+)]/[ approximately COO(-)]) close to 1, indicating that the binding is a one-to-one charge neutralization between the cationic surfactant headgroups and anionic carboxylate sites of the polymers. When alpha is low, the binding of DoTab to the unneutralized polymers is driven by the hydrophobic interaction. The onset of hydrophobic binding takes place at DoTab concentration as low as 0.01 mM in 0.05 wt % polymer solution, where the saturation occurs at C(DoTab) approximately 0.19 mM and the amount of bound surfactant is approximately 0.09 mmol of DoTab/(g of polymer) at saturation concentration. The binding results in the formation of the polymer-surfactant complex. For the polymer with low MAA/EA molar ratio, the complex coagulates at a higher DoTab concentration that leads to phase separation; however, for polymers with high MAA/EA molar ratio, the complex remains dispersed and the mixture is stable even at high DoTab concentration.  相似文献   

2.
The neutralization behaviors of random and cross-linked methacrylic acid-ethyl acrylate (MAA-EA) copolymers were examined as a function of degree of neutralization (alpha) using potentiometric titration and laser light scattering techniques. The random MAA-EA copolymers exhibit a conformational transition from a compact latex particle to a swollen randomly coiled aggregate upon neutralization over a certain range of alpha. With further addition of NaOH, the swollen aggregates dissociate into several smaller clusters. This conformational change is controlled by the balance between electrostatic repulsion within ionized MAA groups and hydrophobic attraction of EA. The cross-linked MAA-EA copolymers do not undergo a drastic conformational change during neutralization. The polymer latex particles swell slightly upon neutralization, and the extent of chain expansion is proportional to MAA molar composition and inversely proportional to cross-linked density. The electrostatic Gibbs energy (DeltaG(el)) obtained from the potentiometric titration data indicates that a higher MAA portion is favorable for the deprotonization of both the random and cross-linked MAA-EA copolymers, suggesting that the dissociation is mainly dominated by polymer structure instead of the electrostatic attraction between H(+) and -COO(-). Moreover, static and dynamic light scattering results confirmed that the cross-linked latex particle exists as monodispersed hard sphere in the collapsed state, whereas in its swollen state the latex particle possesses a core-shell structure.  相似文献   

3.
Amphiphilic polymeric micelle, as a novel pseudostationary phase in EKC was used to determine eight kinds of corticosteroids namely hydrocortisone, prednisolone, hydrocortisone acetate, prednisone, cortisone acetate, prednisolone acetate, dexamethasone, and triamcinolone acetonide in cosmetics. Amphiphilic random copolymer poly(methyl methacrylate‐co‐methacrylic acid) (P(MMA‐co‐MAA)) was micellizated via neutralization in alkaline aqueous solution. The influences of the molar ratio of monomer MMA to MAA, the concentration of polymer and pH on the polymeric micelle microstructure and EKC performances were investigated. As molar ratio of MMA to MAA in P(MMA‐co‐MAA) increased, both CMC and environmental polarity of the inner core in polymeric micelle decreased dramatically. With increasing monomer ratio, the size of polymeric micelles increased firstly, and then decreased, finally increased again. ζ potential of the micelle had a slight decline trend. As increment of polymer concentration, the size of the polymeric micelle increased steadily. By optimizing the monomer ratio, the polymer concentration, and pH of the running buffer, as well as operation conditions such as separation voltage and temperature, the eight analytes could be separated within 16.5 min using 7.5 mg/mL polymer with the monomer ratio of 7:3 dissolved in pH 9.2 borax buffer as the running buffer. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for eight analytes were between 85.9 and 106%. This method was of accuracy, repeatability, pretreatment simplicity, and could be applied to the quality control of cosmetics.  相似文献   

4.
含苯胺低聚物侧链的导电共聚物的合成与性能研究   总被引:1,自引:0,他引:1  
通过高分子反应合成了含有不同长度苯胺链段的聚甲基丙烯酸类接枝聚合物 ,研究结果发现 ,当苯胺链段达到一定长度时 ,经质子酸掺杂后的聚合物具有一定的电导性 ,其中 ,接枝苯胺八聚体的共聚物经质子酸掺杂后其电导率可以达到 10 - 5S cm .  相似文献   

5.
Computer simulations, dissipative particle dynamics (DPD) and mesoscopic dynamics (MesoDyn), are performed to study the aggregation behavior of pH-sensitive micelles self-assembled from amphiphilic polymer poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly-(ethylene glycol) methyl ether monomethacrylate), P(MMA-co-MAA)-b-PPEGMA. Ibuprofen (IBU) is selected as the model drug. It can be seen from DPD simulations that P(MMA-co-MAA)-b-PPEGMA and IBU form spherical core-shell micelles at certain compositions, and IBU molecules distribute inside the core formed by hydrophobic MMA. The polymer molecules aggregate first, and then IBU diffuses into the aggregate, forming drug-loaded nanoparticles. With different compositions of polymer and IBU, aggregate morphologies in water are observed as sphere, column and lamella. From MesoDyn results, with less hydrophobic MMA beads, the polymer chains are more difficult to form ordered aggregates, and the order parameters get equilibrated in a longer time. The pH value also affects the aggregate process. At pH<5, the polymer could form traditional core-shell micelles. But at pH>5, the morphology of micelles is found to be anomalous and loose for releasing drug. MAA aggregates on the surface, instead of the inside. The simulation results are qualitatively consistent with the experimental results.  相似文献   

6.
A series of sodium methacrylate and poly(ethylene glycol) (PEG) comb copolymers (MAA/PEG) with approximate PEG chain lengths of 7, 11, and 22 ethylene oxide units were synthesized by free radical polymerization. Their weight-average molecular mass was found to be approximately 66 000. A commercial sample of a PEG comb polymer with an acrylic backbone was also used in the studies (Sokalan HP 80). The interaction of the MAA/PEG comb polymers and pure sodium methacrylate (SPMA) with sodium dodecyl sulfate (SDS) was studied by ESR spectroscopy using 5-doxyl stearic acid (5-DSA) spin probe and by conductivity measurements. Surfactant aggregation in water occurred at SDS concentrations lower than the surfactant critical micelle concentration (cmc) and depended on the polymer concentration. The observations have been attributed to changes in the effective ionic strength of the systems due to the polymer itself, and it has been concluded that there is no interaction between the MAA/PEG comb copolymers or SPMA and SDS. This has been confirmed by the fact that the decrease in surfactant aggregation concentration is similar in magnitude to the decrease observed on adding NaCl when counterion ion condensation effects are taken into account. It is apparent that the electrostatic repulsions between the surfactant molecules and the methacrylate backbone of the MAA/PEG comb copolymers inhibit association of SDS with the PEG side chains.  相似文献   

7.
pH-responsive microgels are crosslinked polymer particles that swell when the pH approaches the pK(a) of the ionic monomer incorporated within the particles. In recent work from our group it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of poly(EA/MAA/BDDA) (ethylacrylate, methacrylic acid and butanediol diacrylate) microgel dispersions [J.M. Saunders, T. Tong, C.L. Le Maitre, T.J. Freemont, B.R. Saunders, Soft Matter 3 (2007) 486]. In this work we report the pH dependent swelling and rheological properties of poly(MMA/MAA/EGDMA) (methylmethacrylate and ethyleneglycol dimethacrylate) microgel dispersions. This system was investigated because it contains monomers that are already used as biomaterials. The poly(MMA/MAA/EGDMA) particles exhibit pH-triggered volume swelling ratios of up to ca. 250. The swelling onset for these particles occurs at pH values greater than ca. 6.0. A pK(a) for these particles of ca. 6.7 is consistent with titration and swelling data. Fluid-to-gel phase diagrams for concentrated poly(MMA/MAA/EGDMA) dispersions were determined as a function of polymer volume fraction and pH using tube-inversion measurements. The rheological properties for the gelled microgel dispersions were investigated using dynamic rheology measurements. The elastic modulus data for the poly(MMA/MAA/EGDMA) gelled dispersions were compared to data for poly(EA/MAA/BDDA) microgels. A similar pH-dependence for the elastic modulus was apparent. The maximum elastic modulus was achieved at a pH of about 7.0. The elastic modulus is an exponentially increasing function of polymer volume fraction at pH 7.0. Preliminary cell challenge experimental data are reported that indicate that gelled poly(MMA/MAA/EGDMA) microgel dispersions are biocompatible with cells from human intervertebral discs. However, the duration over which these experiments could be performed was limited by gradual redispersion of the gelled microgel dispersions. Based on the results presented it is suggested that poly(MMA/MAA/EGDMA) microgel would be a good candidate as a biomaterial for structural support of soft connective tissues.  相似文献   

8.
p-Aminobenzoic acid and formaldehyde were condensed in the presence of acid catalyst. The linear condensation polymer thus obtained was then separated into four fractions by a fractional precipitation method. Conductometric titrations were carried out on these four polymer fractions and the conglomerate in nonaqueous solvents with acid as well as base. The titration curves indicated a large number of additional breaks before the complete neutralization of COOH or NH2 groups. These observations have been interpreted in terms of degree of polymerization and the structure of the polymer.  相似文献   

9.
The alkalization of carboxylated acrylic polymer latexes by sodium hydroxide gives rise to swelling of the particles. For a poly(n-butyl acrylate) latex copolymerized with 15 wt % methacrylic acid (MAA) and 7 wt % acrylonitrile the particle volume increases by a factor of 30. The alkali-swelling does not depend on the type of monovalent cation used in the base (LiOH, NaOH, KOH, NH4OH). In contrast, when bivalent cation bases such as Ca(OH)2 are employed no latex swelling is observed during neutralization because of ionic crosslinking of the copolymer chains. Crosslinking also takes place when the bivalent cations (Ca2+, Zn2+, Mg2+) are added as chlorides to dispersions with latexes previously swollen by sodium hydroxide. In these experiments the original size of the latexes is reached again at a molar ratio MAA: bivalent metal ion of 2:1, i.e. at charge compensation of the carboxyl groups. The shrinking behavior is almost independent of the type of bivalent metal ion used. On the other hand, it is more pronounced when trivalent cations such as Fe3+ are added. In general, the experiments demonstrate that the alkali swelling of acrylic latexes is dominated by electrostatic forces. Received: 18 August 1998 Accepted in revised form: 26 October 1998  相似文献   

10.
The aggregation behavior and the thermodynamics of binding between poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate) (PEO-b-PDEAEMA) block copolymers and plasmid DNA were examined. Binding between the polymer and DNA were confirmed by gel electrophoresis. The high affinity between the polymer and DNA was demonstrated through the ethidium bromide (EtBr) displacement assay, and the binding was found to be related to the stoichiometric balance between the amine group of the polymer and the DNA nucleotide molar ratio (N/P molar ratio). The light scattering and TEM results showed that, at low polymer concentration, the hydrodynamic radii (R(h)) of the polymer/DNA complexes was around 90 nm; however, at sufficiently high polymer concentration, the complexes condensed to around 35 nm induced by a structural rearrangement of the amphiphilic nature of the block copolymer. The isothermal titration calorimetric results showed that the binding between the polymer and DNA is driven by a large favorable enthalpy.  相似文献   

11.
The solubility and phase behavior of poly(benzyl methacrylate) (PBzMA) and poly(styrene-co-methyl methacrylate) (P(St-co-MMA)) in a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfone)imide ([C(2)mim][NTf(2)]), have been explored as a function of temperature. Although both polymers have solvatophobic phenyl groups and solvatophilic methacrylate groups in the structure, their distribution on the polymer chains is quite different. In PBzMA, both structures are incorporated in each monomer unit, whereas in P(St-co-MMA)s the distribution is statistically determined by the monomer reactivity ratio of St and MMA. Both polymer solutions in [C(2)mim][NTf(2)] become turbid with an increase in temperature (lower critical solution temperature (LCST) behavior). The turbidity change occurs sharply at 100 degrees C for PBzMA, whereas it is sluggish for P(St-co-MMA)s. The LCST-type phase-separation temperature for P(St-co-MMA)s decreases with an increase of the St composition. The sluggish phase separation for P(St-co-MMA)s has been explained in terms of the presence of the MMA sequences along the polymer chain, which inhibits the St aggregation to a certain extent. The dynamic light scattering (DLS) measurements for PBzMA reveal that the hydrodynamic radius of PBzMA suddenly changes at 100 degrees C; below this temperature, no aggregation is observed. This result strongly implies that the coil-to-collapse transition is of the first-order type. It has been demonstrated that the LCST-type phase separation of the polymers in an ionic liquid is greatly affected by the distribution of the solvatophilic and solvatophobic groups on the polymer chains.  相似文献   

12.
The local environment of unneutralized carboxylic acid groups in poly(ethylene‐ran‐methacrylic acid) (E/MAA) ionomers neutralized with monovalent (Li and Na) and divalent (Ca and Zn) ions has been investigated with Fourier transform infrared spectroscopy. These unneutralized acid groups interact with one another to form acid dimers, and they associate with existing neutralized complexes. At room temperature, no free acids can be detected for any system, not even for pure E/MAA. With the acid dimer peak (1700 cm?1) and a known unneutralized acid concentration, the concentration of acids associated with a neutralized complex can be determined. This concentration of associated acids increases with increasing neutralization, reaches a maximum below 50% neutralization, and then decreases toward zero near 80% neutralization. This behavior is perhaps due to the increased driving force for aggregation of the neutralization acids. Although Li, Na, and Ca contain similar concentrations of associated acids over the range of neutralizations, the Zn system contains far fewer associated acids (i.e., more acid dimers) at any particular neutralization level. These results are confirmed by an analysis of the absorbance in the neutralized region (1650–1500 cm?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2833–2841, 2002  相似文献   

13.
We are investigating an unusual reaction that occurs when methyl methacrylate (MMA) is kept in contact with concentrated nitric acid1 (65% HNO3, sp. gr. 1.41). Polymer of high molecular weight is formed, showing about one unit of methacrylic acid (MAA) per unit of MMA, when equilibrium is reached. The reaction depends on the temperature, the molar ratio MMA:HNO3, and the reaction time. Although we also found polymer at temperatures in the range 50–70°C,2 in this paper we only report the results when the temperature was kept between 25 and 40°C. Methacrylic acid (MAA) was found to homopolymerize under those mild conditions; its behavior was investigated. Although we also observed that polymer is formed with sulfuric acid (96%) and that acrylic acid polymerizes with both nitric and sulfuric acid at 20–30°C, we are limiting this article to the observed polymerizing action of nitric acid on methyl methacrylate and on methacrylic acid. Work proceeds on this matter in this laboratory.  相似文献   

14.
陈进 《高分子科学》2010,(3):311-322
<正>Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths N_b,arm lengths N_a and arm densities m are carried out to study the elastic behavior of comb-like polymer chains.The radius of gyration,the shape factors and bond length in different cases during elastic process are calculated,and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains.But the arm density m affects the chain conformation non-monotonously.Some thermodynamic properties are also studied.Average Helmholtz free energy and elastic force f all increase with elongation ratioλfor all chains.  相似文献   

15.
Single, double and triple charging of poly(propylene glycol) (PPG) (Mn = 1900 g/mol) in the presence of binary mixtures of cations (Li+, Na+, K+, Cs+, and NH4+) under electrospray ionization (ESI) conditions were investigated. For these studies, sodium ion was selected as the reference cation, and the resulting ion-intensities were evaluated as a function of the [Na+]/[C+] ratio (where C+ is the other cation, i.e., Li+, K+, Cs+ and NH4+). A linear relationship was found between INa+/IC+)and [Na+]/[C+] (INa+ and IC+ stand for the intensity of the singly charged PPG molecules cationized with Na+ and C+ ions, respectively). The slope of the INa+/IC+--[Na+]/[C+] plot (alpha) indicates the binding selectivity of Na+ ions to PPG chains with respect to cation C+. In the case of the doubly charged PPG chains, the INaNa2+/INaC2+ and INaC2+/ICC2+ versus [Na+]/[C+] ratio also yield straight lines with slopes of approximately alpha/2 and 2alpha, respectively (INaNa2+, INaC2+ and ICC2+ are the intensity of the doubly charged PPG chains cationized with two Na+ ions, Na+ and C+ ions, and two C+ ions, respectively). Similarly, linear dependences with the [Na+]/[C+] ratio for the corresponding intensity ratios of the triply charged PPG were found. Based on the value of alpha, the selectivity of the cations was found to increase in the order of Li+ < Cs+ approximately Na+ < K+ approximately NH4+. The observed relative ion intensities are interpreted on the basis of the solution state equilibrium between PPG and the cations. In addition, the investigations showed that the abundances of the doubly and triply charged PPG-containing mixed cations can be optimized in a simple way using the value of alpha.  相似文献   

16.
Solvents have an essential association with polymer solution behavior. However, few researches have been deeply done on this respect. In recent years, our research group focus on the study on effect of solvent properties on solution behavior and film condensed state structure for semi-rigid conjugated polymer up till to apply for optoelectronic device. Herein, influence of solvent properties including solubility of solvent, aromaticity, polarity and hydrogen bonds on semi-rigid polymer chain solution behavior, i.e., single chain conformation, chain shape,size and chains aggregated density were studied by means of static/dynamic laser light scattering(DLS/SLS) and exponential law etc. Effect of solvent properties on condensed state structure of the semi-rigid conjugated polymer film was studied by UV absorption spectroscopy, PL spectroscopy and electron microscopy etc. The essential reasons for the influence were discovered and the mechanism was revealed. It was found that solution behavior with different solvent properties had an essential physical relationship with chains condensed state structure of the semi-rigid conjugated polymers. More importantly, there was a quantitative structure-activity relationship between solution and film. The key to this relationship depended on the interaction between solvent molecules and the semi-rigid conjugated polymer chains. This interaction could also affect optoelectronic devices performance. This study is of great significance to effectively control the condensed state structure of the semirigid conjugated polymers in the process of dynamic evolution from solutions to films. It not only enriches the knowledge and understanding of both semi-rigid conjugated polymer solution behaviors and film condensed state physics based on polymer physics, but also is meaningful to practical application for conjugated polymer and other traditional polymer systems.  相似文献   

17.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
All-atom molecular dynamics simulations are used to study the condensation behavior of monovalent (Na(+)) and multivalent (Ca(2+)) salt counterions associated with the co-ions (Cl(-)) surrounding the charged poly(methacrylic acid) (PMAA) chain in water. The study is extended to the influences on chain conformation, local arrangement, and dynamics of water in the highly diluted aqueous solutions. We find that even when the salt ions are monovalent, they attract more than one charged monomer and act as a bridging agent within the chain, as the multivalent salt ions. In principle, the salt ions bridge between not only the "non-adjacent" but also the "adjacent" charged monomers, leading to a more coil-like and a locally stretched conformation, respectively. With an increase in the salt concentration, the amount of coiled-type condensed ions increase and reach a maximum when the chain conformation becomes the most collapsed; whereas, the stretched-type shows an opposite trend. Our results show that the attractive interactions through the condensed salt ions between the non-adjacent monomers are responsible for the conformational collapse. When the salt concentration increases high enough, a significant increase for the stretched-type condensed ions makes an expansion effect on the chain. These stretched-type salt ions, followed by the adsorption of the co-ions and water molecules, tend to form a multilayer organization outside surrounding the PMAA chain. Thus, the expansion degree of the chain conformation is greatly limited. When only the monovalent Na(+) ions are present in the solutions, water molecules are primarily adsorbed into either the condensed Na(+) ions or the COO(-) groups. These adsorbed water molecules form hydrogen bonds with each other and enhance the local bridging behavior associated with the Na(+) condensation on the resultant chain conformation. With an increase in the amount of multivalent Ca(2+) salt ions, more water molecules are bonded directly with the condensed Ca(2+) ions. In this case, only the condensed Ca(2+) ions provide a strong bridging effect within the polymer chain. We observe a significant shift towards a higher frequency of the oxygen vibration spectrum and only a slight shift towards a higher frequency of the hydrogen spectrum for the water molecules associated with the ion condensation.  相似文献   

19.
Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate(MMA),butyl acrylate(BA), methacrylic acid(MAA),styrene(St)and ethylene glycol dimethacrylate(EGDMA)as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAAEGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMAMAA -St)with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA)core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt%MAA content in the core preparation were obtained.  相似文献   

20.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号