首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fluorine, chlorine, bromine, and iodine have been studied in biological samples and other related matrices owing to the need to understand the biochemical effects in living organisms. In this review, the works published in last 20 years are covered, and the main topics related to sample preparation methods and analytical techniques commonly used for fluorine, chlorine, bromine, and iodine determination in biological samples, food, drugs, and plants used as food or with medical applications are discussed. The commonest sample preparation methods, as extraction and decomposition using combustion and pyrohydrolysis, are reviewed, as well as spectrometric and electroanalytical techniques, spectrophotometry, total reflection X-ray fluorescence, neutron activation analysis, and separation systems using chromatography and electrophoresis. On this aspect, the main analytical challenges and drawbacks are highlighted. A discussion related to the availability of certified reference materials for evaluation of accuracy is also included, as well as a discussion of the official methods used as references for the determination of halogens in the samples covered in this review.
Figure
Methods commonly used for determination of F, Cl, Br, and I in samples relevant to bioanalytical sciences  相似文献   

2.
We have developed a piezoelectric sensor for the determination of atrazine. It is based on the modification of a molecularly imprinted film of TiO2 that was placed on a quartz crystal via a surface sol?Cgel process. The resulting sensor exhibits high selectivity for atrazine, a re-usability that is better than that of other sensors, a response time of 3?min, a wider linear range (0.0005?C8?mM), and a lower detection limit (0.1???M). The analytical application of the atrazine sensor confirms the feasibility of atrazine determination.
Graphical abstract
The response of QCM electrodes prepared by various methods to atrazine (pH 5.0).  相似文献   

3.
Liquid phase microextraction (LPME) enables analytes to be extracted with a few microliters of an organic solvent. LPME is a technique for sample preparation that is extremely simple, affordable and virtually a solvent-free. It can provide a high degree of selectivity and enrichment by eliminating carry-over between single runs. A variety of solvents are known for the extraction of the various analytes. These features have led to the development of techniques such as single drop microextraction, hollow fiber LPME, dispersive liquid-liquid microextraction, and others. LPME techniques have been applied to the analysis of pharmaceuticals, food, beverages, and pesticides. This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover (a) sample treatment techniques in general, (b) single-drop microextraction, (c) extraction based on the use of ionic liquids, (d) solidified floating organic drop microextraction, and various other techniques. Contains 149 references.
Figure
This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover sample treatment techniques in general, single-drop microextraction, extraction based on the use of ionic liquids, solidified floating organic drop microextraction, and various other techniques.  相似文献   

4.
A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.
Figure
?  相似文献   

5.
Gold electrodes were modified with self assembled layers (SAMs) composed of mercaptopropionic acid, thiodipropionic acid, dithiodipropionic acid, cysteamine and gold nanoparticles and used to study the electrooxidation of dopamine (DA) in solution at pH 7. SAMs endowed with gold nanoparticles gave the highest catalytic effect. The results showed that such electrodes are capable of resolving the oxidation peaks of DA, ascorbic acid, and uric acid which is most favourable with respect to the detection of DA in physiological matrices.
Figure
Gold electrodes modified with S-containing compound and gold nanoparticles were used for determination of dopamine in aqueous solution. The modified electrodes could clearly resolve the oxidation peaks of dopamine, ascorbic acid and uric acid with peak-to-peak separation enabling determination of these compounds in the presence of each other.  相似文献   

6.
Amino acid analysis (AAA) has always presented an analytical challenge in terms of sample preparation, separation, and detection. Because of the vast number of amino acids, various separation methods have been applied taking into consideration the large differences in their chemical structures, which span from nonpolar to highly polar side chains. Numerous separation methods have been developed in the past 60 years, and impressive achievements have been made in the fields of separation, derivatization, and detection of amino acids (AAs). Among the separation methods, liquid chromatography (LC) prevailed in the AAA field using either pre-column or post-column labeling techniques in order to improve either separation of AAs or selectivity and sensitivity of AAA. Of the two approaches, the post-column technique is a more rugged and reproducible method and provides excellent AAs separation relatively free from interferences. This review considers current separations combined with post-column labeling techniques for AAA, comparison with the pre-column methods, and the strategies used to develop effective post-column methodology. The focus of the article is on LC methods coupled with post-column labeling techniques and studying the reactions to achieve optimum post-column derivatization (PCD) conditions in order to increase sensitivity and selectivity using various types of detectors (UV–Vis, fluorescence, electrochemical etc.) and illustrating the versatility of the PCD methods for practical analysis.
Figure
Reaction‐detection scheme for the fluorescent derivative of proline with o‐pthalaldehyde reagent  相似文献   

7.
Drug monitoring is usually performed by liquid chromatography coupled with optical detection or electrospray ionization mass spectrometry. More recently, matrix-assisted laser desorption/ionization (MALDI) in combination with triple quadrupole or Fourier-transform (FT) mass analyzers has also been reported to allow accurate quantification. Here, we present a strategy that employs standard MALDI time-of-flight (TOF) mass spectrometry (MS) for the sensitive and accurate quantification of saquinavir from an extract of blood peripheral mononuclear cells. Unambiguous identification of saquinavir in the mass spectra was possible because of using internal mass calibration and by an overall low chemical noise in the low mass range. Exact mass determination of the constant background peaks of the cell extract, which were used for recalibration, was performed by an initial MALDI-FT-MS analysis. Fast and multiplexed sample analysis was enabled by microarray technology, which provided 10 replicates in the lower nL range for each sample in parallel lanes on a chip. In order to validate the method, we employed various statistical tests, such as confidence intervals for linear regressions, three quality control samples, and inverse confidence limits of the estimated concentration ratios.
Figure
?  相似文献   

8.
Surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, SERS is particularly well suited for environmental analysis. We summarize here some considerations with respect to the detection of pollutants by SERS and provide an overview on recent achievements in the determination of organic pollutants, heavy metal ions, and pathogens. Following an introduction into the topic and considering aspects of sensitivity, selectivity, reproducibility and portability, we are summarizing applications of SERS in the detection of pollutants, with sections on organic pollutants (pesticides, PAHs and PCBs, explosives), on heavy metal ions, and on pathogens. In addition, we discuss current challenges and give an outlook on applications of SERS in environmental analysis. Contains 174 references.
Figure
The application of surface enhanced Raman spectroscopy (SERS) for the detection of environmental pollutants.  相似文献   

9.
Liquid phase microextraction (LPME) is a popular technique for sample pretreatment before the trace determination of target compounds from complex matrices, examples being pesticides in environmental and food samples, or drug residuals in biological samples such as blood or urine. LPME is simple, affordable, easy to operate, and highly sensitive. It is a miniaturized implementation of conventional liquid-liquid extraction in which only a few microliters of solvents are used instead of several hundreds of milliliters. This review focuses on newly developed LPME-based techniques, their application to environmental and biological samples, on their limitations, and on future applications.
Figure
Liquid phase microextraction (LPME) is a popular technique for sample pretreatment before the trace determination of target compounds from complex matrices. This review focuses on newly developed LPME-based techniques, their application to environmental and biological samples, on their limitations, and on future applications.  相似文献   

10.
Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.
Figure
Free solution Capillary Electrophoresis (CE) of polyacrylates with various topologies  相似文献   

11.
We report on the voltammetric determination of the flavonoid Baicalein by using a carbon paste electrode that was doped with multi-walled carbon nanotubes. The resulting sensor exhibits excellent redox activity towards Baicalein due to the large surface area and good conductivity of the electrode. Cyclic voltammetry at various scan rates was used to investigate the redox properties of Baicalein. At the optimum conditions, the sensor displays a linear current response to Baicalein in the 0.02–10 μM concentration range, with a limit of detection of 4.2 n M. The method was successfully applied to the determination of Baicalein in spiked human blood serum samples and in a Chinese oral liquid.
Figure
We construct a new voltammetric sensor, based on multi-walled carbon nanotubes (MWCNT) doped Carbon paste electrode(CPE), The proposed electrode can improve the oxidation of Baicalein intensively, which can applied to the quantitative determination of Baicalein with wide linear response and low detection limit.  相似文献   

12.
The determination of alkylphenols in sewage sludge is still hindered by the complexity of the matrix and of the analytes, some of which are a mixture of isomers. Most of the methods published in the literature have not been validated, due to the lack of reference materials for the determination of alkylphenols in sludge. Given this situation, the objectives of the present study were to develop a new quality-control material for determining octylphenol, nonylphenol and nonylphenol monoethoxylate in sludge. The material was prepared from an anaerobically digested sewage sludge, which was thermally dried, sieved, homogenized and bottled after checking for the bulk homogeneity of the processed material. Together with the sewage sludge, an extract was also prepared, in order to provide a quality-control material for allowing laboratories to test the measuring step. The homogeneity and 1-year stability of the two materials were evaluated. Statistical analysis proved that the materials were homogeneous and stable for at least 1?year stored at different temperatures. These materials are intended to assist in the quality control of the determination of alkylphenols and alkylphenol ethoxylates in sewage sludge.
Figure
Quality-control sewage sludge material for APs determination  相似文献   

13.
This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references.
Figure
This article reviews recent advances in the use of carbon nanomaterials (CNs) for the electroanalytical measurements of biogenic amines.  相似文献   

14.
We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices. Different modelling tools are presented and briefly described. We then compare combinations of four preprocessing strategies (principal component analysis, fast Fourier transform, discrete wavelet transform, voltammogram-windowed slicing integral) with four modelling alternatives (principal component regression, partial least squares regression, multi-way partial least squares regression, artificial neural networks) by employing data from a voltammetric bioelectronic tongue, an array formed by enzyme-modified biosensors and applied to the discrimination and quantification of phenolic compounds.
Figure
We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices  相似文献   

15.
We have developed a technique for the solid-phase extraction of gold using various kinds of pyridine-functionalized nanoporous silica prior to its determination in various samples using FAAS. The effects of solution pH, sample and eluent flow rate, sample volume and of potentially interfering ions are compared. The limits of detections vary from 28 to 53?pg?mL?1. The accuracy and precision are between 99.8% and 98.3?% and 0.7 to 1.6?% (RSD), respectively. The method was successfully applied to several standard reference materials.
Figure
A technique has been developed for the solid-phase extraction of gold using various kinds of pyridine-functionalized nanoporous silica prior to its determination in various samples using FAAS.  相似文献   

16.
We have used a nano-structured nickel-aluminum layered double hydroxide (Ni-Al LDH) for the extraction of trace levels of selenium prior to its determination by continuous-flow hydride generation atomic absorption spectrometry. Extraction is based on the adsorption of Se(IV) anions on the Ni-Al-nitrate LDH, and/or their exchange with the nitrate anions in the LDH interlayer. The effects of pH value, amount of nanosorbent, eluent type and concentration, sample volume and flow rate were optimized. No appreciable matrix effects were observed. Under optimum conditions, the limit of detection (defined as three times the standard deviation of the blank signal divided by the slope of the calibration plot) is 10 pg?mL?1, and the relative standard deviation is 2.8 %. The sorption capacity and preconcentration factor are 10 mg?g?1 and 33, respectively. The method was successfully applied to the determination of Se(IV) in tap water, river water, well water, wastewater and oyster tissue (certified reference material, CRM 1566b).
Figure
Effect of NaOH concentration on elution of the retained Se(IV) ions from solid phase extraction column containing nickel-aluminum-nitrate layered double hydroxide nano-sorbent is shown. Combination of the sample preparation procedure with continuous flow hydride generation AAS exhibited excellent selectivity and sensitivity that could be exploited in determination of Se(IV) in various complicated matrices.  相似文献   

17.
The detection of regulated and forbidden herbs in pharmaceutical preparations and nutritional supplements is a growing problem for laboratories charged with the analysis of illegal pharmaceutical preparations and counterfeit medicines. This article presents a feasibility study of the use of chromatographic fingerprints for the detection of plants in pharmaceutical preparations. Fingerprints were developed for three non-regulated common herbal products—Rhamnus purshiana, Passiflora incarnata L. and Crataegus monogyna—and this was done by combining three different types of detection: diode-array detection, evaporative light scattering detection and mass spectrometry. It is shown that these plants could be detected in respective triturations of the dry extracts with lactose and three different herbal matrices as well as in commercial preparations purchased on the open market.
Figure
Detection of Passiflora incarnata in three commercial preparations using chromatographic fingerprints  相似文献   

18.
Graphene was prepared by electrochemical reduction of exfoliated graphite oxide at cathodic potentials, and used to fabricate a graphene-modified glassy carbon electrode (GCE) which was applied in a sensor for highly sensitive and selective voltammetric determination of hydroquinone (HQ). Compared to a bare (conventional) GCE, the redox peak current for HQ in pH 5.7 acetate buffer solution is significantly increased, indicating that graphene possesses electrocatalytic activity towards HQ. In addition, the peak-to-peak separation is significantly improved. The modified electrode enables sensing of HQ without interference by catechol or resorcinol. Under optimal conditions, the sensor exhibits excellent performance for detecting HQ with a detection limit of 0.8?μM, a reproducibility of 2.5% (expressed as the RSD), and a recoveries from 98.4 to 101.2%.
Figure
Graphene based glassy carbon electrode was used to determine hydroquinone in the simultaneous presence of it isomers of catechol (CC) and resorcinol (RC). The desired sensitivity and selectivity is attributed to the good conductivity and excellent electrocatalytic ability of graphene.  相似文献   

19.
A derivatization procedure for the qualitative gas chromatography–mass spectrometry (GC-MS) analysis of pinacolyl alcohol (PA) that employs phenyldimethylchlorosilane (PhDMClS) and the promoter N-methylimidazole is described. While PA, underivatized, can be detected using conventional gas chromatographic methods, its polarity and low boiling point make its detection in complex matrices challenging. The silylation procedure described herein generates a PA-derivative exhibiting an increased on-column retention time, thus shifting its GC-MS signal away from commonly encountered, volatile, interfering analytes. Derivatized PA could be distinguished from other PhDMClS-derivatized isomeric alcohols by its unique retention time and mass spectrum. The derivatization was demonstrated to perform well in the GC-MS analysis and identification of PA in samples from Proficiency Tests administered by the Organisation for the Prohibition of Chemical Weapons (OPCW).
Figure
NMI-Accelerated Silylation of Pinacolyl Alcohol for GC-MS Analysis  相似文献   

20.
Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.
Figure
LC-APCI-MS/MS for analysis of halogenated flame reterdants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号