首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanostructures are containers for surface plasmons - the collective oscillation of conduction electrons in phase with incident light. By controlling the shape of the container, one can control the ways in which electrons oscillate, and in turn how the nanostructure scatters light, absorbs light, and enhances local electric fields. With a series of discrete dipole approximation (DDA) calculations, each of a distinctive morphology, we illustrate how shape control can tune the optical properties of silver nanostructures. Calculated predictions are validated by experimental measurements performed on nanocubes with controllable corner truncation, right bipyramids, and pentagonal nanowires. Control of nanostructure shape allows optimization of plasmon resonance for molecular detection and spectroscopy.  相似文献   

2.
Silver-based nanostructures with tailored localized surface plasmon resonance are of interest for a number of practical applications. They can conventionally be divided into three main groups: (1) anisotropic silver particles, (2) particles of alloys of silver with other metals, and (3) composite particles with dielectric or magnetic cores and silver shells. Fine “tuning” of plasmon resonance of these particles is ensured by changes in their shapes, composition, and/or structure. Procedures for the colloidal synthesis of nanostructures of all these groups and some fields of their application are described, with the main attention focused on core/shell composite particles.  相似文献   

3.
The DNA was determined based on resonance light scattering (RLS) spectrometry and the localized surface plasmon resonance. The gold bipyramids were used as the probes and synthesized by a seed-mediated method. Cetyltrimethylammonium bromide was used as stabilizing agent. DNA can be bound to the gold bipyramids due to electrostatic interaction and aggregates, which results in a strong enhancement of the RLS intensity. Under the optimal conditions, the intensity of RLS is directly proportional to the concentration of DNA in the range from 0.1 to 2.0 μg mL(-1).  相似文献   

4.
Surfactants can direct the growth of gold nanoparticles to create anisotropic structures in high yield by simple means, yet the exact roles of surfactants and other reactants are not entirely understood. Here we show that one can exploit the geometrical dependence of the localized surface plasmon resonant extinction spectrum of gold nanorods to monitor their synthesis kinetics. By using quantitative measurements of nanorod extinction cross sections, Gans' theory for the spectral extinction of prolate spheroids can be normalized to provide values for the nanorod length and diameter from extinction spectra measured during growth. The nanorod length growth rate was first observed at 0.15 nm/s and decayed during the growth reaction. The rate dependence on nanorod size did not correspond to any simple reaction-limited or diffusion-limited growth mechanisms.  相似文献   

5.
We report on a simple and sensitive method for the determination of tetracycline based on its reducing action on AgNO3 in alkaline medium containing ammonia and sodium hydroxide at 65°C. As a result of this reaction, silver nanoparticles (AgNPs) are formed. The AgNPs are stabilized in solution by adding poly(vinyl pyrrolidone) as a capping agent. The formed AgNPs were identified by surface plasmon resonance absorption spectrum and transmission electron microscopy image. The plasmon absorption peak at 411 nm is proportional to the concentration of tetracycline. The calibration graph is linear in the concentration range of 0.05–5.0 mg/L with a detection limit of 0.013 mg/L. This method was applied to the determination of tetracycline in pharmaceutical products.  相似文献   

6.
Luo Y  Yu F  Zare RN 《Lab on a chip》2008,8(5):694-700
We have designed and fabricated a polydimethylsiloxane (PDMS) microfluidic device containing an array of gold spots onto which antigens or antibodies of interest can be attached. We use surface plasmon resonance (SPR) imaging to monitor the antibody-antigen recognition and binding events. This combination offers two significant advantages: (1) the microfluidic device dramatically reduces reaction time and sample consumption; and (2) the SPR imaging yields real-time detection of the immunocomplex formation. Thus, an immunoreaction may be detected and quantitatively characterized in about 10 min. The sensitivity of this method is at the subnanomolar level. When gold nanoparticles are selectively coupled to the immunocomplex to cause signal amplification, the sensitivity reaches the ten to one hundred picomolar level but the time required increases to about 60 min.  相似文献   

7.
Silver nanoparticles of different sizes were prepared by citrate reduction and characterized by UV-vis absorbance spectra, TEM images and photoluminescence spectra. The morphology of the colloids obtained consists of a mixture of nanorods and spheres. The surface plasmon resonance (SPR) and photoemission properties of Ag nanoparticles are found to be sensitive to citrate concentration. A blue shift in SPR and an enhancement in photoluminescence intensity are observed with increase in citrate concentration. Effect of addition of KCl and variation of pH in photoluminescence was also studied.  相似文献   

8.
9.
Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. As in surface plasmon resonance, the electric field of incident light can be deposited to collectively excite electrons of a conduction band, with the result being coherent localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, dielectric environment and separation distance of NPs. This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity. The benefits and challenges associated with various experimental designs of nanoparticles and detection systems, as well as creative approaches that have been developed to improve sensitivity and limits of detection are highlighted using examples from the literature.  相似文献   

10.
Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel−1, 0.523 nm, 5.13 × 10−3 RIU degree−1 and 6.014 × 10−4 RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.  相似文献   

11.
In order to increase the scope and utility of small molecule microarrays (SMMs) we have combined SMMs and SPRi to screen small molecule antagonists against protein targets. Several small molecules, including immunosuppressive drugs (rapamycin and FK506) and reported inhibitors (FOBISIN and Blapsin) of 14-3-3ζ proteins have been used to validate this technology. Furthermore, a small library of isatin derivatives have been synthesized and screened on developed platform against 14-3-3ζ protein. Three molecules, derived from the endogenous intermediate isatin termed, FZIB-35, FZIB-36 and FZIB-38 were identified as novel inhibitors which shows significant interaction with 14-3-3ζ. A mutation in the binding groove of 14-3-3ζ, (K49E), almost abolishes the binding of these compounds to 14-3-3ζ protein. To exclude the probability of false positives, two more purified proteins (PtpA and BirA) were also tested. Furthermore, in order to confirm the binding pocket specificity, competition assay against R18 peptide was also carried out on presented platform. We show that SMMs in combination with SPRi are a powerful method to identify lead compounds in high throughput manner without the need to develop an activity based assay.  相似文献   

12.
13.
The switching of DNA monolayers between a "lying" and a "standing" state initiated by applying electric field, and the subsequent DNA hybridization at different states were investigated in a contactless, label-free mode by surface plasmon resonance (SPR) technique. The results showed that the strength of the electric field and surface coverage could influence the switching of DNA monolayers. In addition, it was found that DNA hybridization efficiency could be enhanced or decreased when DNA probes stood straight up or lay flat on the gold surface, depending on the potential of the gold substrate. The enhancement of DNA hybridization efficiency reached the maximum when surface coverage reached 5.87 x 10(12) molecules/cm(2) and the potential of gold substrate was more negative than -0.7 V (versus ITO-coated glass). The research may be helpful for the construction of sensitive biosensors, biochips, and nanoscale electronic devices.  相似文献   

14.
Abanulo JC  Harris RD  Sheridan AK  Wilkinson JS  Bartlett PN 《Faraday discussions》2002,(121):139-25;discussion 229-51
We describe the fabrication and characterisation of gold-coated graded index channel waveguide sensors designed for simultaneous electrochemical and surface plasmon resonance studies. The active sensing electrode area is a thin gold film between 0.5 and 5 mm in length and 200 microm wide deposited on top of a 3 microm wide waveguide which forms one arm of a Y-junction while the other arm of the Y-junction serves as a reference. Using these devices we have measured simultaneously the changes in transmittance through the device whilst carrying out cyclic voltammetry in either sulfuric or perchloric acid solution or during the deposition of an UPD layer of copper at the gold surface. In all cases we obtain stable and reproducible results which demonstrate the very high sensitivity of the devices to sub-monolayer changes occurring at the gold electrode surface. The response of these integrated optoelectrochemical devices is discussed in terms of a numerical model for the propagation of light within the waveguide structure.  相似文献   

15.
We report the fabrication and characterization of a micropatterned membrane electrode for electrochemical signaling of a bacterial pore-forming toxin, Streptolysin O (SLO) from S. pyogenes. Microcontact printing of an alkylthiol monolayer was used to fabricate an array template, onto which cholesterol-containing DMPC vesicles were fused to form lipid layer structures. The construction of the supported membranes, including pattern transfer and vesicle fusion, was characterized by in-situ surface plasmon resonance (SPR) imaging and electrochemistry. Quantitative analysis of the resulting membrane by using SPR angular shift measurements indicates that the membranes in the hydrophilic pockets have an average thickness of 8.2 +/- 0.4 nm. Together with fluorescence microscopy studies, the results suggest that this could be a mixed lipid assembly that may consist of a bilayer, vesicle fragments, and lipid junctions. The voltammetric response of the redox probe ferrocene carboxylic acid (FCA) was measured to quantify the toxin action on the supported membrane. The electrochemical measurements indicate that fusion of vesicles on the template blocked the access of FCA, whereas the injection of SLO toxin restored the redox response. The anodic peak current of FCA was found to increase with toxin concentration until a plateau was reached at 40 HU/mL. The method is highly sensitive such that 0.1 HU/mL of SLO (1.25 pM) can yield a well-defined response. In addition, it eliminates the need for a highly insulating layer in membrane sensing, which opens up new avenues in developing novel sensing interfaces for membrane-targeting proteins and peptides.  相似文献   

16.
Gold nanoparticles (GNPs) with fully matched DNA duplexes on their surfaces aggregate together without molecular cross-linking at high salt concentrations. The mechanism of this non-cross-linking (NCL) interaction has been elusive. In this paper, NCL interaction between duplex-modified GNPs and a duplex-modified flat gold surface is presented for the first time. This new experimental platform has enabled us to study the NCL interaction between duplexes with different sequences. We immobilized 15-base single-stranded (ss) DNA onto the surfaces of GNPs with a diameter of 40nm and onto a flat gold substrate. The GNPs were hybridized with 15-base ssDNA at a low salt concentration. A microfluidic device was used for simultaneous delivery of the following three components onto the gold substrate: the duplex-modified GNPs, 15-base ssDNA to be hybridized onto the substrate, and NaCl at a high concentration. Adsorption of the GNPs onto the substrate was monitored using surface plasmon resonance imaging. When the GNPs and the substrate had an identical sequence, the adsorption behavior was analogous to the aggregation behavior of GNPs in test tubes. Furthermore, we investigated 12 cases in which the GNPs and the substrate had completely different sequences, and obtained results suggesting that the NCL attraction force primarily depends on the terminal base pairs of the duplexes. This means that the main mechanism of the NCL interaction is likely to be inter-duplex base stacking rather than formation of Holliday junctions.  相似文献   

17.
One-dimensional (1-D) metallic nanoscale materials have long been of interest to many groups of scientists. Within the last 2 decades, great advances in the synthesis of metallic nanorods and nanowires have been made, with a variety of templating methods. More recently, bottom-up chemical syntheses of these materials have become increasingly reported in the literature. This Forum Article describes the synthesis, physical properties, and potential applications of 1-D metals, with an emphasis on silver and gold derived from studies in the authors' laboratories.  相似文献   

18.
The use of Au/SiO(x) interfaces for the investigation of DNA hybridization using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) simultaneously is demonstrated. Standard glass chemistry was used to link single-stranded DNA (ss-DNA) on aldehyde-terminated Au/SiO(x) interfaces. The layer thickness and amount of grafted oligonucleotides (ODNs) were calculated from SPR on the basis of a multilayer system of glass/Ti/Au/SiO(x)/grafted molecule. Capacitance and resistance values of the modified interface before and after hybridization were calculated from EIS data using an equivalent circuit and allowed the affinity rate constant, K(A) = 4.07 x 10(5) M(-1), to be determined. The EIS results were comparable to those obtained by SPR hybridization kinetics recorded in parallel.  相似文献   

19.
Gold nanoislands interact with gaseous ozone to produce a surface plasmon resonance shift, similarly to the interaction of ozone and gold nanoparticles in water. Gold nanoislands are produced by sputtering, which significantly simplifies the synthesis and produces controlled size for the gold nanoislands. The shift of surface plasmon resonance peak was monitored while gold nanoislands were exposed to variable concentration of gaseous ozone. The shift was then correlated with ozone concentration. Our current results indicate sensing gaseous ozone at concentration of as low as 20 μg/L is achievable. Gold nanoislands were reversed to their original wavelength and were able to cycle between the wavelengths as ozone was introduced and removed. Potentially, this system can be useful as a sensor that identifies the presence of ozone at low part-per-billion concentrations of ozone in gaseous media.  相似文献   

20.
The influence of the morphology of gold nanoparticles on the surface plasmon resonance was investigated experimentally and theoretically. Highly monodisperse bumpy gold nanoparticles of increasing size were synthesized, and the surface plasmon resonance wavelength shifted to longer wavelengths more rapidly with increasing particle size for bumpy particles than for spherical gold nanoparticles. The detailed surface morphology of bumpy gold nanoparticles was characterized by AFM, TEM, and SEM, and the optical properties were investigated on a single particle level. The comparison of the plasmon resonant properties between bumpy and spherical gold nanoparticles was also examined with a theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号