首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A review is presented on the current state of the art and future trends in the development of sol-gel stationary phases for capillary electrochromatography (CEC). The design and synthesis of stationary phases with prescribed chromatographic and surface charge properties represent challenging tasks in contemporary CEC research. Further developments in CEC as a high-efficiency liquid-phase separation technique will greatly depend on new breakthroughs in the area of stationary phase development. The requirements imposed on CEC stationary phase performance are significantly more demanding compared with those for HPLC. The design of CEC stationary phase must take into consideration the structural characteristics that will provide not only the selective solute/stationary phase interactions leading to chromatographic separations but also the surface charge properties that determine the magnitude and direction of the electroosmotic flow responsible for the mobile phase movement through the CEC column. Therefore, the stationary phase technology in CEC presents a more complex problem than in conventional chromatographic techniques. Different approaches to stationary phase development have been reported in contemporary CEC literature. The sol-gel approach represents a promising direction in this important research. It is applicable to the preparation of CEC stationary phases in different formats: surface coatings, micro/submicro particles, and monolithic beds. Besides, in the sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. One remarkable advantage of the sol-gel approach is the mild thermal conditions under which the stationary phase synthesis can be carried out (typically at room temperature). It also provides an effective pathway to integrating the advantageous properties of organic and inorganic material systems, and thereby enhancing and fine-tuning chromatographic selectivity of the created hybrid organic-inorganic stationary phases. This review focuses on recent developments in the design, synthesis, characterization, properties, and applications of sol-gel stationary phases in CEC.  相似文献   

3.
碳纳米材料由于其具有独特的纳米结构、大的比表面积、较强的热稳定性、良好的导电性以及较好的吸附性能等物理化学性质,因而在分析科学、生命科学、材料科学及环境科学等领域得广泛的应用.结合国内外最新文献,对近5年来碳纳米材料在毛细管电色谱新型固定相的制备研究方面进展进行了评述,包括毛细管电色谱的分类及分离机理、毛细管电色谱柱的制备方法和优缺点,碳纳米材料(石墨烯、碳纳米管、氧化石墨烯、还原氧化石墨烯、富勒烯)的结构性质及制备方法、碳纳米材料在毛细管电色谱柱固定相中的应用及作用机理等,并对其在色谱应用领域的方向进行了展望.  相似文献   

4.
Porous monoliths based on N,N-dimethylacrylamide (DMAA) or methacrylamide (MAA) were prepared inside fused silica capillaries as stationary phases for nano-chromatography. The columns were characterized in terms of flow rate and backpressure and showed, e.g. differences as a function of the salt concentration added to the polymerization mixture. When the columns were investigated for the separation of uncharged (polar hydroxylated aromatic compounds) and charged (amino acids) analytes under pressure driven conditions (pLC), differences to the previously observed behavior under voltage driven conditions (CEC) were observed. Whereas the non-charged analytes showed similar behavior in both cases--thus, corroborating the previous assumption of a mainly chromatographic separation mode driven by hydrophilic interactions in CEC--the charged amino acids did not. Assuming that the separation was governed by chromatographic phenomena in the pLC mode and by both chromatographic and electrophoretic effects in the CEC mode, the experiments allowed deconvoluting the two contributions. In particular, the charged amino acids appeared to interact with the stationary phases mainly by electrostatic interactions modified by some hydrophilic effects.  相似文献   

5.
Malik A 《Electrophoresis》2002,23(22-23):3973-3992
The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology.  相似文献   

6.
Separation of rhubarb anthraquinones by capillary electrochromatography   总被引:2,自引:0,他引:2  
J. Ding  B. Ning  G. Fu  Y. Lu  S. Dong 《Chromatographia》2000,52(5-6):285-288
Summary A rapid, simple method for packing capillary electrochromatography (CEC) columns with HPLC stationary phases is described. The basis of the method is the use of a vacuum to suck a slurry of stationary phase into the fused-silica tubing, a procedure which takes approximately ten seconds only, then compression of the stationary phase by means of an HPLC pump. These packed CEC columns have been investigated for the separation of five anthraquinones from rhubarb. Separation of the anthraquinones inRheum palmatum L. under optimized conditions is presented.  相似文献   

7.
Yan L  Zhang Q  Zhang W  Feng Y  Zhang L  Li T  Zhang Y 《Electrophoresis》2005,26(15):2935-2941
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.  相似文献   

8.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2002,23(22-23):4005-4021
Recent progress in enantiomeric separations by capillary electrochromatography (CEC) is reviewed. The development of simple and robust CEC column technologies plays an important role for popularization of CEC. During the last several years, various approaches for the preparation of enantioselective columns have been reported. Currently, the monolithic column technology (continuous beds) represents the most advanced approach for the preparation of CEC columns. The development of new chiral stationary phase used for CEC is another important issue in this field. Fundamental investigations on electrochromatographic behaviors of various CSPs are necessary in order to understand the separation mechanism and thus improve the separation performance. Some chiral stationary phases performed better under nonaqueous CEC conditions than reversed-phase conditions. Coupling CEC with mass spectrometry (MS) provides a powerful tool for enantiomeric separation. Finally, some applications of enantiomeric separation by CEC are summarized.  相似文献   

9.
A monolithic silica stationary phase functionalized with an enantioselective strong cation exchanger based on an aminosulfonic acid derivative was used for chiral separations of basic test solutes by nonaqueous CEC and capillary LC. The effects of the applied electric field as well as the ionic strength in the eluent on electrokinetic and chromatographic contributions to the overall separation performance in the electrically driven mode were investigated. Hence, under the utilized experimental conditions, i. e., at an electric field strength in the range of approximately 120-720 V/cm (applied voltages 4-24 kV) and an ionic strength of the counterion between 5 and 25 mM (at constant acid-to-base, i. e., co- to counterion ratio of 2:1), no deviations from the expected linearity of the EOF were observed. This led to the conclusion that an occurrence of the so-called electrokinetic effects of the second kind resulting from electric double layer overlap inside the mesopores of the monolithic stationary phase and concentration polarization phenomena were largely negligible. Additional support to this conclusion was inferred from the observed independence of CEC retention factors on the electric field strength across the investigated ionic strength range of the BGE. As a consequence, a simple framework allowing for calculation of the CEC mobilities from the individual separation contributions, viz. electroosmotic and electrophoretic mobilities as well as retention factors, could be applied to model CEC migration. There was a reasonable agreement between calculated and experimental CEC mobility data with deviations typically below 5%. The deconvolution of the individual contributions to CEC migration and separation is of particular value for the understanding of the separation processes in which electrophoretic migration of ionic sample constituents plays a significant role like in ion-exchange CEC and may aid the optimization procedure of the BGE and other experimental conditions such as the optimization of the surface chemistry of the stationary phase. In combination with the remarkable column performance evident from the low theoretical plate heights observed under CEC conditions for all test solutes (3.5-7.5 microm in the flow rate range of 0.4-1.2 mm/s, corresponding to (130,000-300,000 plates per meter), the presented framework provides an attractive tool as the basis for the assessment of chromatographic selectivities in a miniaturized CEC screening of new selectors and chiral stationary phases (CSPs), respectively, from experimental CEC data and known CE mobilities.  相似文献   

10.
11.
Retention behaviour of biological peptides was investigated on a stationary phase bearing an embedded quaternary ammonium group in a C21 alkyl chain by both high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). In HPLC experiments, variation of acetonitrile (ACN) content in the mobile phase showed that peptides are mainly separated by RP mechanism. The weak or negative retention factors observed as compared to C18 silica stationary phase suggested the involvement of an electrostatic repulsion phenomenon in acidic conditions. Comparison of HPLC and CEC studies indicated that (i) ion-exclusion phenomenon is more pronounced in HPLC and (ii) higher ACN percentage in mobile phase induce for some peptides an increase of retention in CEC, pointing out the existence of mechanisms of retention other than partitioning mainly involved in chromatographic process. This comparative study demonstrated the critical role of electric field on peptide retention in CEC and supports the solvatation model of hydrolytic pillow proposed by Szumski and Buszewski for CEC using mixed mode stationary phase in CEC.  相似文献   

12.
13.
Capillary electrochromatography (CEC) requires stationary phases that enable appropriate electroosmotic propel under various conditions. Analyte retention can be controlled through hydrophobic or electrostatic interaction with the packing material. The development and characterization of new strong anion-exchange materials with additional hydrophobic moieties (SAX/C18 mixed-mode phases) is described. The synthesis was based on polymer encapsulation of porous silica. The phases were systematically characterized by means of elemental analyses, HPLC frontal analyses and CEC experiments. The studies focused on the influence of various parameters (e.g., pH, kind of buffer, capillary wall) on the electroosmotic flow (EOF). Phases with high anion-exchange capacity generated a fast and constant EOF over a wide pH range. Long-time stability of EOF and hydrophobic retention under CEC conditions were demonstrated within the course of 100 consecutive injections. The applicability of the SAX/C18 phases in appropriate buffer systems is demonstrated for neutral, acidic and basic compounds.  相似文献   

14.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

15.
The separation mechanism in capillary electrochromatography (CEC) is a hybrid differential migration process, which entails the features of both high-performance liquid chromatography and capillary zone electrophoresis, i.e., chromatographic retention and electrophoretic migration. The adsorption of the different sample components on the stationary phase can be modified by the presence of the electric field across the column. Here, we use our previously published approach to decouple chromatographic retention from electrophoretic migration that allows us to investigate the "modification" of the retention process in CEC. This paper presents a methodology for characterization of changes in the retention of neutral and charged sample components, under identical conditions of stationary and mobile phase.  相似文献   

16.
Hu J  Xie C  Tian R  He Z  Zou H 《Electrophoresis》2006,27(21):4266-4272
A hybrid silica monolithic stationary phase for RP CEC was prepared by in situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol-gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups.  相似文献   

17.
Wu R  Hu L  Wang F  Ye M  Zou H 《Journal of chromatography. A》2008,1184(1-2):369-392
The column technologies play a crucial role in the development of new methods and technologies for the separation of biological samples containing hundreds to thousands compounds. This review focuses on the development of monolithic technology in micro-column formats for biological analysis, especially in capillary liquid chromatography, capillary electrochromatography and microfluidic devices in the past 5 years (2002-2007) since our last review in 2002 on monoliths for HPLC and CEC. The fabrication and functionalization of monoliths were summarized and discussed, with the aim of presenting how monolithic technology has been playing as an attractive tool for improving the power of existing chromatographic separation processes. This review consists of two parts: (i) the recent development in fabrication of monolithic stationary phases from direct synthesis to post-functionalization of the polymer- and silica-based monoliths tailoring the physical/chemical properties of porous monoliths; (ii) the application of monolithic stationary phases for one- and multi-dimensional capillary liquid chromatography, fast separation in capillary electro-driven chromatography, and microfluidic devices.  相似文献   

18.
Capillary electrochromatography of peptides and proteins   总被引:1,自引:0,他引:1  
Li Y  Xiang R  Wilkins JA  Horváth C 《Electrophoresis》2004,25(14):2242-2256
This paper reviews recent progress in bioanalysis using capillary electrochromatography (CEC), especially in the field of separation of proteins and peptides. Fundamentals of CEC are briefly discussed. Since most of the recent developments on CEC have focused on column technology, i.e., design of new stationary phases and development of new column configurations, we describe here a variety of column architectures along with their advantages and disadvantages. Newly emerged column technologies in CEC for high speed and high efficiency separation are also discussed. Different analytical platforms of CEC such as pressure-assisted CEC or voltage-assisted micro- high-performance liquid chromatography (HPLC), CEC with different detection techniques, CEC on microchip platforms and multidimensional electrochromatography with their applications in peptide and protein analysis are presented.  相似文献   

19.
In capillary electrochromatography (CEC) the flow of the mobile phase is generated by electrosmotic means in high electric field. This work compares band spreading measured experimentally in several packed capillaries with electrosmotic flow (EOF) and viscous flow under otherwise identical conditions. The data were fitted to the simplified van Deemter equation for the theoretical plate height, H = A + B/u + Cu, in order to evaluate parameters A and C in each mode of flow in the different columns. The ratio of these two parameters obtained with the same column in microscale HPLC (mu-HPLC) and CEC was used to quantify the attenuation of their contribution to band spreading upon changing from viscous flow (in mu-HPLC) to electrosmotic flow (in CEC). The capillary columns used in this study were packed with stationary phases of different pore sizes as well as retentive properties and measurements were carried out under different mobile phase conditions to examine the effects of the retention factor and buffer concentration. In the CEC mode, the value of both column parameters A and C was invariably by a factor of two to four lower than in the mu-HPLC mode. This effect may be attributed to the peculiarities of the EOF flow profile in the interstitial space and to the generation of intraparticle EOF inside the porous particles of the column packing. Thus, band spreading due to flow maldistribution and mass transfer resistances is significantly lower when the mobile phase flow is driven by voltage as in CEC, rather than by pressure as in mu-HPLC.  相似文献   

20.
The applicability of capillary electrochromatography (CEC) using packed capillary column to enantiomer separations was investigated. As chiral stationary phases, OD type packing materials of 5 and 3 microm particle diameters, originally designed for conventional high-performance liquid chromatography (HPLC) were employed. The chiral packing materials were packed by a pressurized method into a 100 microm I.D. fused-silica capillary. Several racemic enantiomers, such as acidic, neutral and basic drug components, were successfully resolved, typically by using acidic or basic solutions containing acetonitrile as mobile phases. The separation efficiencies for some enantiomers in the chiral CEC system using the 5 microm OD type packing were superior to those obtained in HPLC using chiral packings. The plate heights obtained for several enantiomers were 8-13 microm or the reduced plate height of 1.6-2.6, which indicates the high efficiency of this chiral CEC system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号