首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

2.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

3.
We consider a linear integral equation, which arises when solving the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a double layer potential, with a hypersingular integral treated in the sense of Hadamard finite value. We consider the case in which the exterior or interior problem is solved in a domain whose boundary is a closed smooth surface and the integral equation is written over that surface. A numerical scheme for solving the integral equation is constructed with the use of quadrature formulas of the type of the method of discrete singularities with a regularization for the use of an irregular grid. We prove the convergence, uniform over the grid points, of the numerical solutions to the exact solution of the hypersingular equation and, in addition, the uniform convergence of the values of the approximate finite-difference derivative operator on the numerical solution to the values on the projection of the exact solution onto the subspace of grid functions with nodes at the collocation points.  相似文献   

4.
A new boundary integral equation formulation for the floating body problem, which is defined on a bounded domain and includes a hypersingular and a nonlocal part, is proved to satisfy a Gärding inequality. Under the assunlption of uniqueness it is shown, that an approximating sequence of related semidiscrete integral operators is uniformly bounded invertible.  相似文献   

5.
易苗  刘扬 《数学杂志》2017,37(5):1040-1046
本文研究了奇异积分方程在反边值问题中的应用问题.利用圆周上的自然积分方程及其反演公式,把Laplace方程的边值反问题转化为一对超奇异积分方程和弱奇异积分方程的组合,通过选取三角插值近似奇异积分的计算并构造相应的配置格式,并使用Tikhonov正则化方法求解所得到的线性方程组.数值实验表明了该方法的有效性.  相似文献   

6.
We study the solvability of a complete two-dimensional linear integral equation with a hypersingular integral understood in the sense of the Hadamard principal value. We justify the convergence of a quadrature-type numerical method for the case in which the equation in question is uniquely solvable. We present an application of the results to the numerical solution of the Neumann boundary value problem on a plane screen for the Helmholtz equation by the surface potential method.  相似文献   

7.
We present and analyze a nonconforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded domains exterior to open surfaces. We consider small wave numbers and low‐order approximations with Nitsche coupling across interfaces. Under appropriate assumptions on mapping properties of the weakly singular and hypersingular operators with Helmholtz kernel, we prove that this method converges almost quasioptimally, that is, with optimal orders reduced by an arbitrarily small positive number. Numerical experiments confirm our error estimate. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 125–141, 2017  相似文献   

8.
A mathematical model of sound propagation from a noise source in urban areas is constructed. The exterior Neumann problem for the scalar Helmholtz equation is reduced to a system of hypersingular integral equations. A numerical method for solving the system of integral equations is described. The convergence of the quadrature formulas underlying the numerical method is estimated. Numerical results are presented for particular applications.  相似文献   

9.
Ch. Zhang  A. Savaidis 《PAMM》2002,1(1):205-206
Analysis of elastic wave propagation in anisotropic solids with cracks is of particular interest to quantitative non‐destructive testing and fracture mechanics. For this purpose, a novel time‐domain boundary integral equation method (BIEM) is presented in this paper. A finite crack in an unbounded elastic solid of general anisotropy subjected to transient elastic wave loading is considered. Two‐dimensional plane strain or plane stress condition is assumed. The initial‐boundary value problem is formulated as a set of hypersingular time‐domain traction boundary integral equations (BIEs) with the crack‐opening‐displacements (CODs) as unknown quantities. A time‐stepping scheme is developed for solving the hypersingular time‐domain BIEs. The scheme uses the convolution quadrature formula of Lubich [1] for temporal convolution and a Galerkin method for spatial discretization of the BIEs. An important feature of the present time‐domain BIEM is that it uses the Laplace‐domain instead of the more complicated time‐domain Green's functions. Fourier integral representations of Laplace‐domain Green's functions are applied. No special technique is needed in the present time‐domain BIEM for evaluating hypersingular integrals.  相似文献   

10.
This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a simple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations considered here.  相似文献   

11.
《Applied Mathematics Letters》2006,19(11):1286-1290
A simple approximate method for solving a general hypersingular integral equation of the first kind with its kernel consisting of a hypersingular part and a regular part is developed here. The method is illustrated by considering some simple examples.  相似文献   

12.
A hypersingular integral equation in two disjoint intervals is solved by using the solution of Cauchy type singular integral equation in disjoint intervals. Also a direct function theoretic method is used to determine the solution of the same hypersingular integral equation in two disjoint intervals. Solutions by both the methods are in good agreement with each other.  相似文献   

13.
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.  相似文献   

14.
We investigate a free boundary value problem of the stationary Stokes' equations. In a previous paper adapted hydrodynamical potentials have been constructed and their jump relations have been discussed. Here we study a direct method to obtain an equivalent boundary integral equations' system of the first kind. Its solution properties are investigated in the framework of strongly elliptic pseudodifferential operators. For numerical purposes a suitable representation formula for the variational equation is given in terms of integro-differential operators which avoids the evaluation of hypersingular integrals.  相似文献   

15.
We consider an initial value problem for the second-order differential equation with a Dirichlet-to-Neumann operator coefficient. For the numerical solution we carry out semi-discretization by the Laguerre transformation with respect to the time variable. Then an infinite system of the stationary operator equations is obtained. By potential theory, the operator equations are reduced to boundary integral equations of the second kind with logarithmic or hypersingular kernels. The full discretization is realized by Nyström's method which is based on the trigonometric quadrature rules. Numerical tests confirm the ability of the method to solve these types of nonstationary problems.  相似文献   

16.
A boundary element method is introduced to approximate the solution of a scattering problem for the Helmholtz equation with a generalized Fourier–Robin‐type boundary condition given by a second‐order elliptic differential operator. The formulation involves three unknown fields, but is free from any hypersingular integral. Existence and uniqueness of the solution are established using a Babuška inf–sup condition. When implementing the method, a lumping process allows to remove two fields from the formulation. The numerical solution has thus the same cost as the one of a problem relative to a usual Neumann boundary condition. Numerical tests confirm the ability of the method for solving this type of non‐standard boundary value problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Received on 14 August 1995. Revised on 20 August 1996. Consider solving the interior Neumann problem with D a simply-connected planar region and S=D a smooth curve.A double-layer potential is used to represent the solution,and it leads to the problem of solving a hypersingular integralequation. This integral equation is reformulated as a Cauchysingular integral equation. A discrete Galerkin method withtrigonometric polynomials is then given for its solution. Anerror analysis is given, and numerical examples complete thepaper.  相似文献   

18.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

19.
We investigate the numerical approximation of the nonlinear Molodensky problem, which reconstructs the surface of the earth from the gravitational potential and the gravity vector. The method, based on a smoothed Nash–Hörmander iteration, solves a sequence of exterior oblique Robin problems and uses a regularization based on a higher-order heat equation to overcome the loss of derivatives in the surface update. In particular, we obtain a quantitative a priori estimate for the error after $m$ steps, justify the use of smoothing operators based on the heat equation, and comment on the accurate evaluation of the Hessian of the gravitational potential on the surface, using a representation in terms of a hypersingular integral. A boundary element method is used to solve the exterior problem. Numerical results compare the error between the approximation and the exact solution in a model problem.  相似文献   

20.
研究在一片均匀薄冰所覆盖的深水中,浸没其间的竖直平板引起的水波散射,冰层看作弹性薄板.通过对障碍物前方的势函数微分,问题被归结为一个超奇异的积分方程,应用适当的Green积分定理,应用一个包含Chebyshev多项式的有限级数配置法,求解该积分方程.得到反射系数和透射系数的数值结果,并在不同的波数和覆盖冰层参数下,用图形表示出来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号