首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Impurity Cr3+ centers in submicron and nanostructured Al2O3 crystals of different phase compositions at temperatures of 300 and 7.5 K were studied by a luminescent vacuum ultraviolet (VUV) spectroscopy method. Photoluminescence (PL) spectra and the energies of 2E, 4T2, and 4T1 excited states of Cr3+ ion depend on the type of crystalline samples phase. The PL excitation spectrum of R-line in α-Al2O3 nanoscale crystals is formed by intracenter transitions (2.5–5.5 eV region), by charge transfer band (6.9 eV) and by effective formation of impurity-bound excitons (9.0 eV region). Such impurity-bound excitons correspond to O2p→Al3s electron transition in surroundings of an impurity Cr3+ center. The efficiency of impurity-bound excitons formation decreases with the increase of the grain size above 100 nm. The size dependence is noticeably shown in PL excitation spectra in VUV region. Excitons bound to impurity centers do not appear in nanostructured δ+θ-Al2O3 crystals. The effect of the electron excitation multiplication is observed distinctly in nanostrucured α-Al2O3 at an excitation energy above 19 eV (more than 2Eg).  相似文献   

2.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

3.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

4.
Luminescence and excitation spectra of doped LiF and NaF crystals are studied by time-resolved optical and luminescent vacuum ultraviolet (VUV) spectroscopy (2–40 eV energy range, T=10–295 K) with the use of synchrotron radiation of the X-ray and the VUV ranges and pulsed electron beams. Spectral kinetic parameters of luminescence and energies of excited states of U6+ ions are determined. The dominant role of the electron-hole mechanism for energy transfer to impurity centers is established. The effect of multiplication of electronic excitations is clearly manifested for E > 25 eV in NaF:U, Cu crystals and determines their high scintillation yield (137% relative to Tl:CsI when detected in the current regime).  相似文献   

5.
Low-temperature photoluminescence (PL) of unactivated KDP crystals under selective synchrotron excitation is for the first time measured with subnanosecond time resolution. Time-resolved PL (2–6 eV) and PL excitation (4–35 eV) spectra, as well as PL kinetics, are measured at 7 K. From the acquired experimental data, luminescent bands related to intrinsic defects of the KDP lattice are identified; in particular, the long-wave band at 2.6 eV is assigned to L defects, and the band at 3.5–3.6 eV is attributed to D defects. An efficient energy transfer over the hydrogen sublattice is shown to take place in KDP at low temperatures. It results in the efficient excitation of L and D center photoluminescence in the fundamental absorption region, at electron transitions to the bottom levels of the conduction band, corresponding to the states of the hydrogen atom. The band gap E g is evaluated to be 8.0–8.8 eV.  相似文献   

6.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

7.
The photoluminescence (PL), PL excitation, and PL decay kinetics of 6Li2O-MgO-SiO2-Ce glasses were studied using time-resolved VUV spectroscopy. The Ce3+ ion PL excitation spectrum contains a known group of structural bands at 4.4–5.2 eV caused by 4f → 5d transitions. Moreover, features at 6.4–7.7 eV were detected and their nature is discussed. At an exciting photon energy Eexc > 25 eV, the photon multiplication effect manifests itself. Based on 6Li-silica glasses, a scintillation neutron detector with improved parameters was developed and produced.  相似文献   

8.
This paper reports on the results of the comprehensive study of the dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals, obtained by low-temperature luminescence vacuum ultraviolet spectroscopy with nanosecond time resolution upon photoexcitation by synchrotron radiation. For the first time, the data have been obtained on the photoluminescence (PL) decay kinetics, PL spectra with time resolution, PL excitation spectra with time resolution, and reflection spectra at 7 K; the intrinsic nature of PL at 3.28 eV has been established; luminescence bands of defects have been separated in the visible and ultraviolet spectral regions; an intense long-wavelength PL band has been detected at 1.72 eV; channels of the formation and decay of electronic excitations in K2Al2B2O7 crystals have been discussed.  相似文献   

9.
Electronic excitations and the processes of their radiative relaxation are studied in pure and Ce3+ ion-doped crystals of lanthanum beryllate excited by synchrotron radiation in the x-ray and VUV ranges by methods of optical and luminescent vacuum ultraviolet time-resolved spectroscopy. Manifestations of excitons of the valence band are absent in the reflection spectra. However, a fast (τ=1.7 ns) and a slow (microsecond range) channel corresponding to two possible types of self-trapped excitons (STE) are found in radiative relaxation of intrinsic electronic excitations at T=10 K. The slow channel corresponds to emission of STE formed through recombination, the fast channel corresponds to emission of relaxed metastable excitons from the STE state. In the energy region higher than 14 eV (E>2E g), the effect of multiplication of electronic excitations due to generation of secondary electron-hole pairs resulting from inelastic scattering of both hot photoelectrons and hot photoholes is exhibited.  相似文献   

10.
The spectroscopic properties of wide-band fluoride Na0.4Lu0.6F2.2 crystals activated by Ce3+ were investigated. The absorption edge for the matrix was found to be at about 9.5 eV. In the 4- to 8-eV region of the absorption spectrum of Na0.4Lu0.6F2.2: Ce3+, all 4f-5d transitions of the Ce3+ ion are observed. In Na0.4Lu0.6F2.2: Ce3+ crystals, ultraviolet/visible emission, reflection and time-resolved vacuum ultraviolet/ultraviolet excitation spectra were recorded at liquid helium and room temperatures.  相似文献   

11.
Luminescence vacuum ultraviolet time-resolved spectroscopy is used to study electronic excitations and energy transfer in Ce3+-doped crystals of gadolinium and yttrium oxyorthosilicates excited by synchrotron radiation in the vacuum ultraviolet (4–30 eV) and x-ray (50–200 eV) regions. At T = 10 K, both crystals exhibit intrinsic electronic excitations whose radiative relaxation occurs through fast (τ = 3 ns) and slow (microsecond) channels, which correspond to two possible types of self-trapped excitons. A comparison of the relaxation of above-edge and core electronic excitations in the Ce3+-doped crystals of gadolinium oxyorthosilicate and lanthanum beryllate indicates that the nature of the charge carriers involved in the recombination processes of energy transfer to luminescence centers is diverse. __________ Translated from Fizika Tverdogo Tela, Vol. 47, No. 8, 2005, pp. 1435–1439. Original Russian Text Copyright ? 2005 by Ivanov, Pustovarov, Kirm, Shlygin, Shirinskii.  相似文献   

12.
The short-wave transmission spectrum of Na0.4Lu0.6F2.2 with the visible/ultraviolet transmission edge of 8 eV was studied. Absorption spectra of the 4f—5d transitions of the Ce3+ ion in the region of 4–8 eV were studied in Ce3+-doped Na0.4Lu0.6F2.2 single crystals. Luminescence spectra in the ultraviolet and visible spectral regions, luminescence decay kinetics and reflection and luminescence excitation spectra in the visible/ultraviolet and ultraviolet regions (4–20 eV) were investigated at helium and room temperatures.  相似文献   

13.
Using the methods of time-resolved and steady-state luminescence spectroscopies, the luminescence and defects creation processes were studied at 4.2-300 K under excitation in the 3.0-10.5 eV energy range for an YAlO3:Ce crystal with very low concentration of Ce3+ ions. The results were compared with those obtained at the study of YAlO3:Ce crystals with large Ce3+ content coming from the same technological laboratory. Three irregular Ce3+ centers were found and two intrinsic defect luminescence centers related to the cation and oxygen vacancies were evidenced. The origin and structure of luminescence centers are discussed.  相似文献   

14.
The spectra and relaxation kinetics of the anomalous (?? < 10 ns) luminescence of Li6GdB3O9:Ce3+ crystals have been experimentally detected. The time-resolved vacuum ultraviolet spectroscopy study has shown that optical transitions at 6.2 eV, caused by the transfer of an electron from the 4f 1 ground state of Ce3+ to autoionizing states near the conduction band bottom of a crystal, lead to the formation of an impurity-bound exciton with the hole component localized on the 4f state of Ce3+ and the electron localized on states of the conduction band bottom. It has been found that the decay of such an exciton in Li6GdB3O9:Ce3+ occurs through radiative recombination, leading to fast luminescence at 4.25 eV. The energy threshold for the formation of the impurity-bound exciton has been determined. The distribution functions of elementary relaxations over the reaction rate constants H(k), which determine the relaxation kinetics and luminescence quenching processes, have been calculated.  相似文献   

15.
Spatially separated defects created by photons with energies 6–8 eV in alkali-earth fluoride crystals doped with cerium are investigated with the help of thermoluminescence. Measuring the spectra of creation of Vk and H peaks of thermostimulated luminescence inBaF 2:Ce3+. we demonstrate that photons with energies higher than 6eV induce H centers (self-trapped holes captured by interstitialF ions), whereas the formation of self-trapped holes begins on exposure to photons with energies greater than 7 eV. The influence of photoionization on theCe 3+ luminescence inBaF 2, SrF2, CaF2, andCeF 3 crystals is investigated in the range of photon energies 4–8 eV. An exponentialCe 3+-emisson decay was observed for excitation energy lying in the range 4–6 eV. Slow and fast decay components were observed under excitation by photons with energies higher than 6 eV. We believe that the slow and fast components are due to the tunnel recombination of trapped electrons with hole centers. A. P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 43–49, March, 2000.  相似文献   

16.
The paper reports on a study of the luminescence of lithium borate crystals (Li6Gd(BO3)3 doped by Eu3+ and Ce3+ ions, Li5.7Mg0.15Gd(BO3)3: Eu, and Li6Eu(BO3)3) initiated by selective excitation by synchrotron radiation at excitation energies of 3.7–27 eV at 10 and 290 K. Efficient energy transfer between the rare-earth ions Gd3+ → Ce3+ and Gd3+ → Eu3+ was found to proceed by the resonance mechanism, as well as by electron-hole recombination. Fast decay kinetics of luminescence of the Ce3+ activator centers was studied under intracenter photoexcitation and excitation in the interband transition region. The mechanisms involved in luminescence excitation and radiative relaxation of electronic states of rare-earth ions are analyzed, and the energy transfer processes operating in these crystals are discussed.  相似文献   

17.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

18.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

19.
The subnanosecond time-resolved ultraviolet luminescence of Li6Gd(BO3)3: Ce crystals under selective excitation by ultrasoft X-rays in the region of the 4d??4f core transitions at temperatures of 7 and 293 K has been investigated for the first time. The performed investigation has revealed the following features: an intense fast component of the luminescence decay kinetics in the subnanosecond range due to the high local density of electronic excitations and the processes of Auger relaxation of the core hole; the modulation of the luminescence excitation spectrum by the ??giant resonance?? absorption band of the 4d-4f photoionization in the energy range 135?C160 eV; and a new broad luminescence band at an energy of 4.44 eV due to the direct radiative recombination between the genetically related electron in the states of the conduction band bottom and hole in the 4f ground state of the Ce3+ ion.  相似文献   

20.
Time‐resolved luminescence properties of Ce3+ doped Y3Al5O12 (YAG) nanocrystals have been studied by means of vacuum‐ultraviolet excitation spectroscopy. It was discovered that additionally to the regular Ce3+ yellow‐green emission which is well‐known luminescence in YAG, new emission covering a broad spectral range from 2.7 eV to 3.5 eV was revealed in the luminescence spectra for all YAG:Ce nanocrystals studied. This blue‐UV emission has fast decay time about 7 ns as well as intensive well‐resolved excitation band peaking at 5.9 eV and, in contrast to green Ce3+ emission, practically is not excited at higher energies. The origin of the blue‐UV emission is tentatively suggested and discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号