首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas-particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas-particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-O and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle-particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

4.
Calculations of the three-dimensional boundary layer in an S shaped duct are performed with various – models. Three different near-wall models are used for the – model, of which one is using a new set of near-wall damping functions deduced from direct numerical simulations of turbulent channel flow available in the literature. The results show that it is possible to obtain damping functions giving better agreement, especially for and , with direct simulation data and experiments than with damping functions deduced from trial and error.  相似文献   

5.
边界层逆压梯度作用下的流动是许多工程中的一个基础问题,由于逆压梯度作用,流动形态复杂,使得数值模拟有很大的难度。基于雷诺平均纳维‐斯托克斯RANS(Reynolds Averaged Navier‐Stokes)方程对二维平板逆压梯度边界层作数值计算研究,选取6种代表性的湍流模式,得到局部摩擦系数的数值解,与实验值比较,发现k‐ω模式具有很好的精度。基于该湍流模式,给出了湍动能分布,该结果有助于认识逆压梯度边界层流动的复杂特征。  相似文献   

6.
A theoretical method based on mathematical physics formalism that allows transposition of turbulence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses underlying these models are then discussed by reference to physical considerations with emphasis on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical possible applications for illustrating the potentials of these models.   相似文献   

7.
Shear layers having different structural properties were produced downstream of devices used to artificially thicken turbulent boundary layers. The means used to produce different structural characteristics are described, along with the effects of changes in structure on wall heat transfer. Results from layers developing over smooth and rough surfaces indicate that alterations of artificial thickening device geometry resulted in larger variations in wall heat transfer near smooth surfaces. The most significant of these occured when alterations were made of inner boundary layer regions, where mean velocity shows a logarithmic dependence on distance from the wall. Outer region changes in mean velocity and turbulence profiles resulted in less significant changes in wall heat transfer, particularly in the flows over the rough wall.  相似文献   

8.
The standard k-ε model and three low-Reynolds number k-ε models were used to simulate pipe flow with a ring device installed in the near-wall region. Both developing and fully developed turbulent pipe flows have been investigated. Turbulence suppression for fully developed pipe flows revealed by hot-wire measurements has been predicted with all three low-Reynolds number models, and turbulence enhancement has been predicted by the standard k-ε model. All three low-Reynolds number models have predicted similar distributions of velocities, turbulence kinetic energy, and dissipation rate. For developing pipe flows, the region of turbulence suppression predicted by the three low-Reynolds number models is much more extensive (up to 30 pipe diameters downstream of the device) than for full developed flow; whereas the standard k-ε model has only predicted turbulence enhancement.  相似文献   

9.
Small and sensitive silicon sensors for turbulent wall-pressure fluctuation measurements have been designed and fabricated using microelectronic technology. For the detection of the pressure fluctuations piezoresistive gauges are placed on a diaphragm and the resistance of these gauges depends on the stresses in the diaphragm. For the determination of the performance of these pressure transducers comparisons with conventional microphones were carried out in a well-defined two-dimensional boundary layer. Power spectra from the silicon pressure transducer revealed a slope in the inertial sublayer corresponding approximately to the 5/3-law of Kolmogorov, and the normalized wall pressure fluctuations agreed well with other direct measurements.  相似文献   

10.
Near-wall measurements are performed to study the effects of surface roughness and viscous shear stresses on the transitionally rough regime (5 < k + < 70) of a zero pressure gradient turbulent boundary layer. The x-dependence is known from the eleven consecutive measurements in the streamwise direction, which allows for the computation of the streamwise gradients in the boundary layer equations. Thus, the skin friction is computed from the integrated boundary layer equation with errors of 3 and 5% for smooth and rough, respectively. It is found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the wall shear stress due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction as k + increases into the fully rough regime. Furthermore, the roughness at the wall reduces the high peak of the streamwise component of the Reynolds stress in the near-wall region. However, for the Reynolds wall-normal and shear stress components, its contribution is not significantly altered for sand grain roughness.  相似文献   

11.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of px/k = 8, 16, 32, 64 and 128, where px is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Reθ = 300–1400, and the height of the roughness element was k = 1.5θin, where θin is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8  px/k  128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (px/k  32) based on the profiles of the Reynolds stresses, whereas those are not for px/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for px/k = 8 and 16. For px/k  32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for px/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.  相似文献   

12.
Disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined by numerically solving the Navier-Stokes equations. The results of direct numerical simulation of isotropic homogenous turbulence are taken as initial conditions. The solution obtained models laminar-turbulent transition in the flat-plate boundary layer at a high freestream turbulence level, time measured from the onset of the motion serving as the longitudinal coordinate. The solution makes it possible to estimate the effect of different factors, such as flow unsteadiness and nonlinearity and the characteristics of the freestream velocity fluctuation spectrum, on laminar-turbulent transition in the boundary layer.  相似文献   

13.
Well-resolved streamwise velocity measurements are used to investigate three measures of self-similarity in the spatial inertial sublayer of turbulent boundary layers. The emergence of self-similarity in the inertial sublayer requires a high Reynolds number, and thus a relatively wide range of δ+=δuτ/ν (1400δ+20,000) is explored. The measures investigated include the Kullback–Leibler divergence (KLD) used in turbulent flow analysis by Tsuji et al. (2005), the logarithmic decrease of the even statistical moments studied by Meneveau and Marusic (2013), and the diagnostic plot of Alfredsson and Örlü (2010). These measures are compared with the analyses of Fife et al. (2005) that determine and exploit an invariant form of the mean momentum equation. A primary focus is on domain(s) where the self-similar behaviors are analytically predicted and empirically observed. The present findings indicate that the approximately constant KLD and approximately logarithmic moment profiles reside in a region that is interior to the bounds of the self-similar inertial domain associated with the mean momentum equation. Conversely, the bounds of the self-similar region on the diagnostic plot correspond closely to the theoretically estimated bounds. Results are briefly discussed relative to Townsend’s notion of outer layer similarity, and, on the inertial domain, the physical existence of uniform momentum zones segregated by narrow vortical fissures.  相似文献   

14.
The influence of rapid oscillations in the outer part of a boundary layer upon the time-averaged skin friction and heat transfer is investigated analytically. The oscillations are taken to be harmonic. The only restriction on the oscillation amplitude is that it should be sufficiently small to permit the use of the boundary layer equations. The derived asymptotic formulae show the explicit dependence of momentum transfer on the frequency and the time-averaged boundary layer flow. For the heat transfer similar formulae can be derived in a number of limiting cases, viz. when the Prandtl number is either large or small.  相似文献   

15.
The sensitivity of aerosol particle motion to local temperature gradients has motivated this investigation of viscous dissipation effects on mass transport rates across nonisthermal, low mass-loading ‘dusty gas’ laminar boundary layers (lbl). From numerical lbl transfer calculations, including ‘ash’ particle thermophoresis and variable thermophysical properties, it has been found that for a specified wall temperature, Tw, and mainstream static temperature, Te cous dissipation within the boundary layer increases total particle deposition rates, its relative importance being dependent on Tw/Te. For combustion turbine blades which operate at near-unity Mach number, neglect of viscous dissipation is found to cause about a 25% underestimate of the fouling rate at Tw/Te = 0.8 for particle diameters between 0.6 × 10?2 μm and 0.3 μm. Alternatively, for conditions of fixed adiabatic wall temperature, Taw, or fixed stagnation (reservoir) temperature, T0, dusty gas acceleration to appreciable Mach numbers is associated with reduced particle arrival rates due, in part, to the associated reduction in mainstream gas temperature. Recently developed mass transfer rate correlations are extended and found to be successful when tested against the present numerical calculations.  相似文献   

16.
A new technique of generating turbulence in large-eddy simulations (LES) has been investigated and results compared with previous studies for validation. The proposed gridInlet technique uses a grid pattern on the inlet boundary patch to produce grid-generated turbulence as used in wind tunnel experiments. This allows the turbulence integral length scale to be controlled by changing the grid size, while the turbulence intensity is controlled by changing the inlet distance. The objective of this paper is to investigate domain and mesh requirements to implement the gridInlet technique. This technique is most suited to studies on the influence of high-intensity isotropic turbulence on objects, particularly if comparisons are to be made to experimental data obtained with grid-generated turbulence.  相似文献   

17.
In the present paper the coherent structures in the outer region of turbulent boundary layer were investigated experimentally and analytically. From the observation of the flow field over smooth wall, rough wall and sand wave wall, it was found that the direct effect of wall on the flow structure can reachy +1≈100, and both lateral and vertical vortices exist in the outer region, but the coherent structures in the outer region are mainly the formation, development and decay of the large-scale lateral vortices. By experimental and dynamical analysis, some influence factors and their relations associated with the dynamical process of lateral vortices were deduced. The project supported by the National Natural Science Foundation of China  相似文献   

18.
The main purpose of this paper is to describe a finite element formulation for solving the equations for k and ε of the classical k–ε turbulence model, or any other two‐equation model. The finite element discretization is based on the SUPG method together with a discontinuity capturing technique to deal with sharp internal and boundary layers. The iterative strategy consists of several nested loops, the outermost being the linearization of the Navier–Stokes equations. The basic k–ε model is used for the implementation of an algebraic stress model that is able to account for the effects of rotation. Some numerical examples are presented in order to show the performance of the proposed scheme for simulating directly steady flows, without the need of reaching the steady state through a transient evolution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of the leading edge shape and the turbulence scale on laminar-turbulent transition in the flat-plate boundary layer due to grid turbulence is investigated. In the experiments, the turbulence scale was changed by a factor of three and the bluntness radius of the edge by a factor of four, all other factors being fixed. It is shown that on the plate with a sharp edge the fluctuation growth rate and the laminar-turbulent transition point depend nonmonotonically on the turbulence scale. On the blunt plate transition occurs considerably earlier than on the sharp plate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号