首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effect of addition of chromium and nickel oxides on the physicochemical properties and performance of V2O5/ZrO2 catalysts was studied for the oxidative dehydrogenation of propane. Addition of chromium oxide increased, whereas addition of nickel oxide lowered the activity. Selectivity for propene was lower for the doped catalysts. The selectivity was lowered by higher total acidity as well as the higher concentration of stronger acid sites in doped catalysts.  相似文献   

2.
Supported oxide catalysts of the overall composition V0.3Mo1Te0.23Nb0.12/nAl–Si–O (n = 0, 10, 25, 35, 50, and 70 wt %) were tested in oxidative dehydrogenation of ethane and were characterized by chemical analysis, X-ray diffraction analysis, and transmission electron microscopy. The use of the Al–Si–O support in a wide range of its content (from 10 to 50 wt %) favors formation of nanodomains of the active М1 phase ensuring higher, compared to the bulk catalysts, activity in oxidative dehydrogenation of ethane. The formation of secondary phases of aluminum molybdate and vanadium–molybdenum double oxide, observed at the support content increased over 35 wt %, leads to worsening of the catalytic properties.  相似文献   

3.
A series of CrOx-ZrO2-SiO2 (CrZrSi) catalysts was prepared by a “one-pot” template-assisted evaporation-induced self-assembly process. The chromium content varied from 4 to 9 wt.% assuming Cr2O3 stoichiometry. The catalysts were characterized by XRD, SEM-EDX, temperature-programmed reduction (TPR-H2), Raman spectroscopy, and X-ray photoelectron spectroscopy. The catalysts were tested in non-oxidative propane dehydrogenation at 500–600 °C. The evolution of active sites under the reaction conditions was investigated by reductive treatment of the catalysts with H2. The catalyst with the lowest Cr loading initially contained amorphous Cr3+ and dispersed Cr6+ species. The latter reduced under reaction conditions forming Cr3+ oxide species with low activity in propane dehydrogenation. The catalysts with higher Cr loadings initially contained highly dispersed Cr3+ species stable under the reaction conditions and responsible for high catalyst activity. Silica acted both as a textural promoter that increased the specific surface area of the catalysts and as a stabilizer that inhibited crystallization of Cr2O3 and ZrO2 and provided the formation of coordinatively unsaturated Zr4+ centers. The optimal combination of Cr3+ species and coordinatively unsaturated Zr4+ centers was achieved in the catalyst with the highest Cr loading. This catalyst showed the highest efficiency.  相似文献   

4.
A method was developed for introducing gallium into Mg-Al hydrotalcites—precursors of oxide catalysts for oxidative dehydrogenation of alkanes. Samples of oxide catalysts were synthesized that contained gallium oxide and also oxides of magnesium, aluminum, chromium, vanadium, molybdenum, and niobium in various combinations. The catalytic properties of the produced catalysts were studied in the oxidative dehydrogenation of ethane, propane, isobutane, and hexane. It was established that the addition of gallium to catalysts increases the ethylene and propylene yields in the oxidative dehydrogenation of ethane and propane. New hydroxo salts with a layered structure of the hydrotalcite type were synthesized: ternary magnesium gallium aluminum hydroxonitrate of variable composition [Al1 ? n Ga n Mg m (OH)3 + 2m ? 1][NO3 · nH2O] and quaternary magnesium gallium chromium aluminum hydroxonitrate of the composition [AlGaCrMg1.8(OH)11.6][NO3 · nH2O]; these salts were found to be isostructural.  相似文献   

5.
Non‐oxidative dehydrogenation of propane to propene is an established large‐scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation‐active metal. Accordingly designed Cu(0.05 wt %)/ZrO2‐La2O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C.  相似文献   

6.
The effect of the deposition of oxidative condensation products in the reaction of oxidative propane dehydrogenation in the presence of SO2 on the catalytic, acid–base, and texture characteristics of silica was studied. It was found that the oxidative condensation products exhibited high catalytic activity in this reaction. The carbonization of silica from 0 to 40 wt % was accompanied by an increase in the yield of propylene from 3.4 to 46 mol % (640°C; a C3H8/SO2/He + N2 mixture, 10 : 10 : 80 vol %). Further accumulation of condensation products resulted in a considerable decrease in the pore volume and radius; this imposed diffusion limitations on both propane conversion and selectivity to propane conversion products. The nature of active and deactivated condensation products was studied by DRIFT spectroscopy, diffuse-reflectance UV–VIS spectroscopy, EPR spectroscopy, XPS, thermal analysis, and electron microscopy.  相似文献   

7.
Supported FeO x -modified silver catalysts based on commercial silica gel and prepared via impregnation with a solution of Fe- and Ag-containing salts while varying the amount of modifier from 1 to 10 wt % are studied. It is found that the introduction of Fe-containing compounds leads to the distribution of silver in the form of clusters/ions on the surface of SiO2, improving the reducibility of the systems in the H2 TPR mode. After reduction at 800°C, the catalysts containing 10 wt % iron and 5 wt % silver comprise a Fe2SiO4 iron silicate phase.  相似文献   

8.
Tungsten-based catalysts of different preparations mixed with TiO2 support were investigated in the metathesis of ethylene and trans-2-butene to propylene. The catalytic activity of silica-supported tungsten oxide catalyst (WO3/SiO2) mixed with TiO2 additional support had higher efficiency than that of mixed SiO2-TiO2 supported tungsten oxide (WO3/SiO2-TiO2). The clean area of the TiO2 additional support, which provides more space for tungsten migration, is an important key to explain the improved catalytic activity, due to the higher fraction of the isolated surface tetrahedral tungsten oxide species and better dispersion of the tungsten oxide species observed by FT Raman spectroscopy. In addition to the synergistic effect of the additional TiO2 support on the metathesis activity, the similar synergy was also observed for the one–third diluted catalysts with additional SiO2. It has been found that the synergistic effect exerted by the presence of additional SiO2 support predominates over the one-third dilution effect of catalyst concentration. Thus, adding an additional support is another simple way to improve the catalytic activity of the catalysts and makes great benefit for being used in real chemical industry.  相似文献   

9.
Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance.

Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.  相似文献   

10.
VOx/TiO2 and MoOx/TiO2 catalysts with the addition of Re (Re/V or Mo = 0.5) were synthetized and tested in oxidative dehydrogenation of propane and in reduction by propane. XPS measurements showed depletion of the surface in Re. The Re additive does not affect the total conversion of propane, but increases the selectivity to propene. The effect is more pronounced for the MoOx/TiO2 catalyst. The increase in the selectivity to propene is accompanied with the increase in the reducibility of the catalysts.  相似文献   

11.
For the first time, a method was developed for introducing indium into Mg-Al hydrotalcites—precursors of oxide catalysts for oxidative dehydrogenation of alkanes. Samples of oxide catalysts were synthesized that contained indium oxide and also oxides of magnesium, aluminum, chromium, vanadium, molybdenum, and niobium in various combinations. The catalytic properties of the produced catalysts were studied in the oxidative dehydrogenation of ethane, propane, and isobutane. It was established that the introduction of indium into catalysts increases the selectivity and the yields of desired products. New hydroxo salts with a layered structure of the hydrotalcite type were synthesized: [Al1 ? n In n Mg m (OH)3 + 2m ? 1][(NO3) · nH2O] and quaternary magnesium indium chromium aluminum hydroxonitrate of the composition [Al0.5In0.5Cr0.5Mg2.5(OH)8.5][(NO3) · nH2O]; these salts were found to be isostructural. The obtained compounds were studied as catalyst precursors.  相似文献   

12.
PtCu single-atom alloys (SAAs) open an extensive prospect for heterogeneous catalysis. However, as the host of SAAs, Cu suffers from severe sintering at elevated temperature, resulting in poor stability of catalysts. This paper describes the suppression of the agglomeration of Cu nanoparticles under high temperature conditions using copper phyllosilicate (CuSiO3) as the support of PtCu SAAs. Based on quasi in situ XPS, in situ CO-DRIFTS, in situ Raman spectroscopy and in situ XRD, we demonstrated that the interfacial Cu+–O–Si formed upon reduction at 680 °C serves as the adhesive between Cu nanoparticles and the silicon dioxide matrix, strengthening the metal–support interaction. Consequently, the resistance to sintering of PtCu SAAs was improved, leading to high catalytic stability during propane dehydrogenation without sacrificing conversion and selectivity. The optimized PtCu SAA catalyst achieved more than 42% propane conversion and 93% propylene selectivity at 580 °C for at least 30 hours. It paves a way for the design and development of highly active supported single-atom alloy catalysts with excellent thermal stability.

This paper describes PtCu single-atom alloys supported on copper phyllosilicate via Cu+–O–Si. The catalyst exhibits sintering resistance in propane dehydrogenation reaction without sacrificing activity and selectivity.  相似文献   

13.
The oxidative dehydrogenation (ODH) of propane was investigated on Ni-V-O catalysts in a wide range of vanadium contents (5-40%). The addition of a small amount of vanadium significantly increased the catalytic activity of NiO for oxidative dehydrogenation of propane to propene. The formation of propene has a good correlation with the coexistence of NiO and Ni3V2O8. This result strongly suggests that a synergetic effect exists between them in NiXV1-XOY (X = 0.95 to 0.6). The best results were obtained with a high Ni/V ratio (e.g. X = 0.95 to 0.85). The active sites and selective oxygen species are discussed. The influence of the catalyst preparation technique and the redox properties of the catalyst were also examined.  相似文献   

14.
Direct catalytic propane dehydrogenation (PDH) to obtain propylene is a more economical and environmentally friendly route for propylene production. In particular, alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned. Herein, a series of rod-shaped porous alumina were prepared through a hydrothermal route, followed by calcination. It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature. Such alumina materials were used as supports for active Cr2O3, and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina. The amount of coke deposited on a self-made catalyst (Cr-Al-800) was 3.6%, which was much lower than that deposited on the reference catalyst (15.7%). The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process, which was beneficial for its high activity and superior anti-coking properties.  相似文献   

15.
Dehydrogenation of propane to propylene over zinc oxide catalysts supported on steaming‐treated HZSM‐5 in the presence of CO2 has been investigated. The highest catalytic performance can be achieved on the 5%ZnO/HZSM‐5(650) catalyst with the HZSM‐5 support steaming at 650°C, which allows the maximum propylene yields of 29.7% and 20.3% at the initial and steady states, respectively, in the catalytic dehydrogenation of propane at 600°C. The superior catalytic performance of this catalyst can be attributed to high dispersion of ZnO and appropriate Br?nsted acidity of the HZSM‐5(650) support. The catalytic stability is enhanced by the addition of CO2 to the feed gas due to the suppression of coke formation.  相似文献   

16.
The 2 % Re/sibunite catalyst is more active than 2 % Re/-Al2O3 and 2 % Re/-Al2O3 catalysts in the dehydrogenation of cyclohexane into benzene (T = 350 °C,w = 0.5 h–1). The substitution of NH4ReO4 by HReO4 in the preparation of the catalyst enhances its activity by a factor of 1.3. Treatment with HNO3 or oxalic acid increases the selectivity by a factor of 1.2 and 1.35, respectively, the overall conversion of cyclohexane being 32–40 %.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 2119–2121, August, 1996.  相似文献   

17.
Fe-Mn, Co-Mn and Ni-Mn composite oxide catalysts based on high specific surface area MnO2 precursor were prepared and applied to catalytic combustion of CH4. Results were compared with that of unmodified MnOx and 1wt.% Pd/-Al2O3. Below 450°C, manganese oxide catalysts show higher activity than Pd/-Al2O3, while the modified manganese oxide catalysts exhibit higher activity than the unmodified one below 420°C. All catalysts were characterized by means of N2-BET, XRD, TG-DTA and H2-TPR. Due to the interaction between Fe, Co or Ni oxides and manganese oxide, the activity of the oxygen species of the modified catalysts is improved, which leads to the increase of their CH4 combustion activity.  相似文献   

18.
Conclusions The selectivity of Al-Pt catalysts (0.25% Pt) in the dehydrogenation of n-decane and n-hexane to n-alkenes depends on the properties of the aluminum oxide and increases in the order: Pt/-Al2O32O3s > Pt/-Al2O3.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2615–2618, November, 1978.  相似文献   

19.
CO2氧化丙烷脱氢制丙烯V-Cr/SBA-15催化剂的研究   总被引:1,自引:0,他引:1  
以介孔分子筛SBA-15为载体,V和Cr为活性组分,采用浸渍法制备了不同V和Cr质量分数的V-Cr/SBA-15催化剂,研究了其对二氧化碳氧化丙烷制丙烯反应的催化性能,采用XRD、BET、TPR等分析测试技术对催化剂的结构进行了表征。结果表明,催化剂中V组分的质量分数较大时以V2O5物相存在,Cr组分以Cr2O3物相存在,它们对SBA-15分子筛的介孔特征影响不大;V、Cr单组分和双组分催化剂都具有较好的CO2氧化丙烷脱氢制丙烯的催化性能,V和Cr质量分数相同的双组分催化剂比单组分催化剂具有更高的催化活性;在V-Cr/SBA-15催化剂中,V和Cr之间存在一定的相互作用,进而改变了催化剂的氧化还原性能,提高了催化剂的催化性能。  相似文献   

20.
Liquid phase hydrogenation of benzonitrile was studied over Sn-Pt/SiO2 catalysts prepared by introducing tetraethyl tin onto the 3 wt.% Pt/SiO2 catalyst. Tin content of the catalysts ranged from 0.05 to 0.63 wt.%, whereas Sn/Pt surface atomic ratios determined by chemisorption measurements were between 0.1 to 3.5. Dibenzylamine selectivity influenced to a small extent by the level of conversion and the Sn/Pt ratio wasca. 75 %. The addition of tin to Pt in the range of (Sn/Pt)surface = 0.50–1.25 led to an increase in the turnover frequency (TOF) by a factor of 2. TOF showed a maximum at a surface atomic ratio of Sn/Pt = 1. The enhancement of catalyst activity upon the addition of tin is explained by the formation of Sn+-Pt ensemble sites on the surface of bimetallic nanoclusters. It is suggested that highly dispersed positively charged tin species, by polarizing the triple bond, enhance the reactivity of the -CN group. Calcination at 300°C followed by re-reduction of the catalysts resulted in a monotonic decrease of specific activity with increasing Sn/Pt ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号